
Copyright 2012 Software Craftsmanship Inc.

What does 20 year of improvement look like? 1

©2012 Software Craftsmanship Inc.

Applying Craftsmanship

What does 20 years of improvement look like?

Pete McBreen, Software Craftsmanship Inc.
pete@mcbreen.ab.ca

©2012 Software Craftsmanship Inc. Page 2What does 20 years of improvement look like?

Software craftsmanship is necessary
because most software is painful to use

With few exceptions, most software that people have
to use as part of their job is abysmal
Corporate applications are in the dark ages and seem to be

getting more baroque and unmaintainable

We need to find a better way to deliver working
software that is a joy to use
Some progress has been made recently, but we still have a

long way to go

©2012 Software Craftsmanship Inc. Page 3What does 20 years of improvement look like?

The concept of Software Engineering is
nearly 45 years old (1968 NATO conference)

It was born in an era of optimism
Man was going to walk on the moon

No matter what the problem there was going to be a
technological fix
Science and engineering were transforming the world

It was only natural to try to apply engineering
concepts to the problems of software
The originators even talked about Software Manufacture

©2012 Software Craftsmanship Inc. Page 4What does 20 years of improvement look like?

From manufacturing it was a short step to
software factories

But factories are not renowned as places where
people actually think about what they are doing
Factories are places where unskilled laborers are supposed

to do what they are told to do - i.e. follow the process

To date however this human wave approach to
software development has not been successful
Cem Kaner has written about Bad Software

Cooper said The Inmates are Running the Asylum

Or as Casey warned we could Set Phasers on Stun

©2012 Software Craftsmanship Inc. Page 5What does 20 years of improvement look like?

Standard software engineering practices
seem to be designed to cause failure

Project managers do not understand technology

“Senior Developer” requires only 5 years experience

Project plans ignore variability

Waterfall is “ideal”

Testing comes last

People forget to think

©2012 Software Craftsmanship Inc. Page 6What does 20 years of improvement look like?

Apologists insist that these problems are
just because of faulty implementation

If reality still messes you up after 45 years then just
maybe the original concept is wrong
We automate repeatable software development tasks

because humans do not do repetition well

But what does the CMM aspire to? Repeatable,
Defined and Optimizing processes!
How can we generate the requisite variety when

optimizing the defined process has to go through the
change control board?

The reality check has bounced!

Copyright 2012 Software Craftsmanship Inc.

What does 20 year of improvement look like? 2

©2012 Software Craftsmanship Inc. Page 7What does 20 years of improvement look like?

Craftsmanship is necessary because
software development is a high skill task

Talent and expertise are required to deliver software
Mechanical metaphors actively prevent us from delivering

great software that users like to use

Craftsmanship is a way to connect passion with
excellence
But enthusiasm needs to be guided by experience

Apprenticeship is a traditional way of gaining mastery in
many complex fields

©2012 Software Craftsmanship Inc. Page 8What does 20 years of improvement look like?

A key part of traditional craftsmanship is
learning through an apprenticeship

A beginner progresses from Apprentice to
Journeyman
Typically combines on the job experience with classroom

training in specific techniques and skills

This works well for high skill trades that are
relatively static
Unfortunately apprenticeship programs tend to limit

innovation as it takes time to agree changes

Hard to adapt to new technology when it takes five years
to agree to a curriculum change

©2012 Software Craftsmanship Inc. Page 9What does 20 years of improvement look like?

We can still use the ideas from apprentice
programs, we just have to be informal

The key idea is that trainees must contribute to real
projects under close supervision
Not cheap labor, an investment in future employees

Best to start with maintenance - fixing the defects in
existing software
Understanding the various failure modes is instructive,

plus fixes get immediate feedback from users

Need tool changes to allow experienced developers to
review the patches before they are committed

©2012 Software Craftsmanship Inc. Page 10What does 20 years of improvement look like?

Too much software is developed without
appropriate adult supervision

Alan Cooper hinted at a
missing role in projects

Plenty of workers and
managers, no foremen

Supervisors are a key part
of most organizations

Hands on mentoring and
coaching is nonexistent

©2012 Software Craftsmanship Inc. Page 11What does 20 years of improvement look like?

We need to find a way to retain experience
and expertise

We need to encourage corporations to create senior
technical roles that remain active on projects
Skilled developers should not have to transition out of

technical roles to advance their careers

Team leads need to take active responsibility for the
quality of what their people produce
Team leads need to be very active in coaching their people

to improve their skills in all areas

©2012 Software Craftsmanship Inc. Page 12What does 20 years of improvement look like?

The sad fact is that many people on projects
do not even know the basics of their day job

Small wonder then that
projects are stressed

The Mythical Man-Month

Programmers at Work

Code Complete

The Pragmatic Programmer

Agile Software Development

Lessons learned in Software
Testing

About Face

Copyright 2012 Software Craftsmanship Inc.

What does 20 year of improvement look like? 3

©2012 Software Craftsmanship Inc. Page 13What does 20 years of improvement look like?

Comp Sci and Software Engineering
degrees do not seem to be effective

Not a popular sentiment, but how else do we explain
how bad software is these days?
Part of the problem is that academia does not see that it

has the responsibility to train software developers

Amusing as it may be, the Open Source community is
a much better at training than most corporations
One key difference is that corporations do not have known

individuals who are responsible for maintaining the code

©2012 Software Craftsmanship Inc. Page 14What does 20 years of improvement look like?

So how can we as developers improve our
skills?

The Pragmatic Programmers suggested that we all
learn a new language every year
So in a sense we have Dave and Andy to thank for Rails

Reading books and code is also an effective strategy
But you have to read it with the intention of applying the

new skills to a significant project

Working with others remains the best way to learn

©2012 Software Craftsmanship Inc. Page 15What does 20 years of improvement look like?

Applying Craftsmanship requires an attitude
change to consider Software As Capital

Too much effort goes into
creation of software

Existing software gets
little investment

Replacement not repair
is the main focus

Broken software is good -
we get to write more

Need to think of software
as embodied knowledge

©2012 Software Craftsmanship Inc. Page 16What does 20 years of improvement look like?

We need to think of software as embodied
knowledge and act accordingly

Multi-generational teams are a good starting point
A team of twenty somethings has great energy, but old

developers bring a breadth of experience to the task

Handoff to a maintenance team never works well
The team that created the application need to stay together

to maintain and create future releases

Documentation is useful, but it has to be written by
the experts, for the experts
Anything else drowns the team in paperwork

©2012 Software Craftsmanship Inc. Page 17What does 20 years of improvement look like?

Too many companies are looking for instant
answers to problems

Consultancies promote
the quick fix idea

Limiting the opportunity
for innovative thinking

Often instant answers
turn out to be a mistake

CASE tools

Outsourcing

Extreme Programming

Requirements traceability

©2012 Software Craftsmanship Inc. Page 18What does 20 years of improvement look like?

Companies need to create senior technical
roles with the authority to make decisions

Managers without technical skills should be
transitioned out of IT roles
Uninformed managers are easy prey for sales promises

Many places have a high turnover of technical staff
Technically competent line managers provide visible

evidence that development is a possible career path

Copyright 2012 Software Craftsmanship Inc.

What does 20 year of improvement look like? 4

©2012 Software Craftsmanship Inc. Page 19What does 20 years of improvement look like?

Most projects are badly mismanaged in
corporations

Few projects allow time
to think about the issues

Small wonder that many
systems are half-baked

Project requirements are
rarely questioned

Many projects are good
responses to the wrong
problem

©2012 Software Craftsmanship Inc. Page 20What does 20 years of improvement look like?

We need project managers to report to the
project lead

The person who is responsible for the success of the
project needs to lead the project
Admin staff can handle tracking the project schedule

The lead needs to focus on the big picture items
Is the entire team working well?

Are we solving the right problems?

Do all our stakeholders understand what is happening?

Is the quality of the design appropriate?

Are the right contracts and budgets in place?

©2012 Software Craftsmanship Inc. Page 21What does 20 years of improvement look like?

Software development can still learn lots
from engineering design practices

Tom Gilb popularized
incremental development
in mid 1980’s

Target was a release after
every 2% of budget

In doing so we learned
how to evolve designs

Real engineers are always
improving their designs

©2012 Software Craftsmanship Inc. Page 22What does 20 years of improvement look like?

Long lived software that has been improved
over the years is typically quite good

Complete rewrites are
necessary sometimes

But most times it is better
to evolve the existing code

Gradual evolution over
many releases works well

Continual improvement is
what matters to users

©2012 Software Craftsmanship Inc. Page 23What does 20 years of improvement look like?

Quality will improve as we recognize the
need for individual accountability

Signing our work is a
good first step

Hunt and Thomas raised
this as an issue in 2000

The Agile Alliance
recognized this as well

People over Process

Talent and expertise
make a big difference

©2012 Software Craftsmanship Inc. Page 24What does 20 years of improvement look like?

Longevity is not enough, developers need a
design aesthetic as well

It is not just about code
Look and feel matter,
users need pleasure

Improve usability as well
as functionality

Both should evolve
together over time

Copyright 2012 Software Craftsmanship Inc.

What does 20 year of improvement look like? 5

©2012 Software Craftsmanship Inc. Page 25What does 20 years of improvement look like?

Improvement comes from spending a lot of
time with your users

Many ideas that look
neat fail in the real world

We learn when the
rubber meets the road

Initial failure is OK as
long as we learn from it

Need longevity in order
to learn

Better decisions are
made by practitioners

©2012 Software Craftsmanship Inc. Page 26What does 20 years of improvement look like?

Working with users is a central part of
applying craftsmanship

The old days of expecting users to be thankful for
whatever we give them are long gone
We need to learn how to fully engage our users in the

development process

Even in a corporate context we need to think about
delighting our users
This requires we learn how to create what the user wants

rather than build what we know how to build

©2012 Software Craftsmanship Inc. Page 27What does 20 years of improvement look like?

Prediction is very difficult – especially
if it is about the future Niels Bohr

Having deep domain
knowledge means you
have to ask your users

You are not your user

Especially when you know
what your user needs

Remember that craftsmanship
comes about through humility

We can always learn more
from our users

©2012 Software Craftsmanship Inc. Page 28What does 20 years of improvement look like?

Software is meant to be pleasant to use, if it
isn’t we are doing something wrong

You need to work in QA to
know how bad software is

There are some bright spots
but users have a raw deal

We need to commit to
improving our users day job

©2012 Software Craftsmanship Inc. Page 29What does 20 years of improvement look like?

Software development is meant to be fun, if
it isn’t the process is wrong

