
Learning The World
Pete McBreen
02-Sep-2019

Contents

1 Database Archaeology 5
1.1 Learning The World . 5
1.2 The role of the Business Analyst . 6
1.3 Business Analysis is Important . 7
1.4 Using SQL in Business Analysis . 7

2 A Sample Database 8
2.1 Sample Database is in PostgreSQL 8
2.2 Installation Instructions . 9
2.3 Post-Installation Test . 9
2.4 Sample Database is now available . 10

3 Database Concepts 11
3.1 Database Schemas . 11
3.2 Database Tables . 13
3.3 Relationships between tables . 13
3.4 Third Normal Form Database Tables 14

4 Basic SQL 15
4.1 Selecting specific columns . 16
4.2 Choosing the data using the where clause 17
4.3 Partial matching on text columns . 18
4.4 Indexes on Tables . 20

5 Basic Database Archeology 21
5.1 Business Concepts . 21
5.2 Data Attributes . 22
5.3 Default Values . 23
5.4 Looking at the Data . 24

6 Pulling Data From Multiple Tables 25
6.1 Other types of joins . 26
6.2 Joining multiple tables . 27
6.3 Table aliases . 28

7 Database Archeology - Relationships 29
7.1 Primary Keys . 30

2

CONTENTS 3

7.2 Foreign Keys . 31
7.3 Table Indexes . 32

8 Entity Relationship Diagrams (ERD) 35
8.1 Full Size Entity Relationship Diagrams 36
8.2 CASE Tools . 38
8.3 An ERD is essential for understanding a large database 38

9 Learning The Domain 40
9.1 How large are the tables? . 40
9.2 Walking the database . 41
9.3 Some joins are incorrect . 41
9.4 Common Table Expressions . 42
9.5 Exploring Cardinality . 45
9.6 Full Text Indexes . 46

10 Database Views 48
10.1 Views . 48
10.2 Materialized Views . 49
10.3 Listing the views . 49
10.4 Understanding Views . 50

11 Business Analysis and Database Archeology 51
11.1 Transaction Rates . 51
11.2 Investigating Durations . 53
11.3 Comparing Capacity and Demand 55

12 Learning To Write SQL Queries 59
12.1 Plan Your Query . 59
12.2 Start by Querying a Single Table . 60
12.3 Add Joins One at a Time . 60
12.4 Add Subquery After Main Query is Correct 61
12.5 Initially Limit the Size of CTE Results 63
12.6 Group and Count in Final Query . 65

13 Modifying Data 67
13.1 Turn Off Autocommit . 67
13.2 SQL Works on Sets of Data . 68
13.3 Updating Existing data . 69
13.4 Inserting new data . 70
13.5 Deleting rows from the database . 70

14 Metadata in Databases 71
14.1 Trading Complexity for Extensibility 71
14.2 Database Archeology and Metadata 73
14.3 Business Analysis with Metadata . 74

15 Object Models in Databases 75

4 CONTENTS

16 Hierarchical Data 77
16.1 Parts and Sub-Parts . 77

Chapter 1

Database Archaeology

Of all the tasks facing a business analyst in understanding what a system does,
diving into the various legacy application databases to understand the information
that is hidden in the database is probably the most daunting. In part this is because
many Business Analysts do not have a software development background, and as
such are not deeply familiar with relational databases and SQL. Unfortunately,
practically all books on learning relational databases and SQL assume that the
reader has a background in programming.

This book makes a different set of assumptions. It assumes that the reader is not a
programmer, and is not interested in becoming a programmer. Instead it assumes
that the reader is a business analyst faced with a set of legacy databases with
inadequate documentation. As usual the task facing the business analyst is that
of understanding what is stored in the database and how the information stored in
the database can be extracted to add value to the business (or improve the day job
of the users of the system).

I call this approach database archaeology because it is necessary to dig deep into
the database to discover how the data got to be the way it is, and then to use that
information to understand the data that drives the business. After the deep dive
into the database it will be easier to undertake the task of learning the world that
is the business.

1.1 Learning The World

Currently Business Analysis is an under appreciated skill in many businesses. In
part that is due to the complexity of the systems that support the businesses, which
makes it very hard to predict the consequences of any changes. Rather than take the
time to understand the business, many managers try to put new systems in place
believing that the new system will improve things. Unfortunately, just putting in a
new system complicates things even more, because there are not even more points
of interaction and more systems to learn (and potentially make mistakes in).

5

6 CHAPTER 1. DATABASE ARCHAEOLOGY

Another large part of the problem is that historically, business analysts generated a
lot of paper documentation about the business processes that were to be automated,
without providing much value in terms of ideas as to how to improve and automate
those processes. The end result of this was the move towards the Agile approaches to
software development that minimized the role of analysts, instead trying to get the
business stakeholders to talk directly to the developers. This has only worked well
in those businesses where the stakeholders have a really deep understanding of their
business AND the developers have a deep appreciation for the needs of the business
users. In most cases the result has been partial systems that do not integrate well
with anything, and user hostile systems that were easy for the developers to write
(but practically nearly impossible for the users to use effectively).

This book is a call for an alternate path forward out of the mess we are in. I call
the approach Learning The World because it asks business analysts to approach
an business with fresh eyes to really get an appreciation of what would be needed
from the processes and systems to improve the day job of the users of the systems.

1.2 The role of the Business Analyst

To oversimplify, business analysis ultimately comes down to two related things,

• Understanding who does what to whom and when
• Understanding what information the business needs to remember about those

activities

Everything else is just an elaboration on those simple sounding statements.

Note. Finding out the why of the who does what to whom and when,
although it can be interesting to discover, it is not a part of the business
analysis task. It might help with understanding the overall context,
and possibly help in finding out functionality that is no longer needed,
but the why could easily sidetrack the effort of investingating what the
system does.

This book focuses on a small part of that, understanding the data that the business
currently has in the existing systems, specifically the data that is stored in relational
databases. From this a business analyst can discover

• Business concepts that are named in the database
• Data attributes that are associated with the business concepts
• Relationships between the concepts
• Cardinality of relationships between the concepts
• Business rules related to the concepts and relationships
• Data volumes and transaction rates
• Data access paths that are supported
• How well the system deals with change over time
• What user activities are not supported
• Business concepts that are missing or only partially implemented

1.3. BUSINESS ANALYSIS IS IMPORTANT 7

1.3 Business Analysis is Important

The Cynefin framework1 identifies multiple problem domains, only one if which,
the simple/obvious problem domain, where the users and managers know exactly
what the best practices are, does not have much need for business analysis. An
example of an obvious domain is Accounting, all accountants agree that double
entry bookkeeping is the best practice, so not much business analysis is required
in this domain. Accountants can explain it clearly and developers know how to
implement it.

In all other problem domains, complicated, complex, chaotic and disordered, domain
experts need the assistance of business analysts to identify and articulate the issues
they face and what they need their software to be able to do. The problem is that
in these domains, the domain experts have unconscious competence, so although
they know what to do, there are few agreed ways to talk about the domain, and no
best practices.

In these domains, there is a continuing problem with software development, that of
requirements change, but Jesse Watson has suggested an alternative formulation:

The nature of the beast is that software requirements rarely change;
what changes is our awareness of them, and our grasp of their implica-
tions.2

Business analysts can help the domain experts capture and express their deep dom-
ain knowledge in a way that makes it available to the software developers.

1.4 Using SQL in Business Analysis

Most organizations are currently using relational databases, so when doing business
analysis for the replacement of a system, or a new system to integrate with existing
systems, it is useful to be able to look at the data in those existing systems. This
is an archeology task since databases are rarely well documented, and with legacy
applications there may be few people in the organization who really understand
what the application does and how it works.

While it can be useful to run the applications and look at how they interact with
their users, being able to also look in detail at the data in the databases is a massive
help in understanding the systems and the overall problem domain. For the effort of
learning to query a relational database using SQL you can get a much better idea of
the business concepts it supports and the limitations it imposes on the applications
that use the database.

When doing business analysis for the replacement of a legacy system, being able
to query the database of the legacy system and the other systems it interfaces
with allows you to identify overlaps in functionality, places where data isduplicated
between the systems, and any mismatch in concepts between the systems.

1https://en.wikipedia.org/wiki/Cynefin_framework
2https://www.linkedin.com/pulse/hard-thing-software-development-jesse-watson

https://en.wikipedia.org/wiki/Cynefin_framework
https://www.linkedin.com/pulse/hard-thing-software-development-jesse-watson

Chapter 2

A Sample Database

Commercially there are only a few relational database technologies that have any
significant market presence:

• DB/2 (IBM)
• MySQL (Oracle)
• Oracle
• SqlServer (Microsoft)
• PostgreSQL

Fortunately all of these more or less follow the SQL standard, and to a large degree,
as a business analyst, what you learn about querying the data in one of these
databases will translate to any of the other databases. The technology underlying
these databases is however completely different so you will find that the various
databases are used in completely different businesses. Organizations that have
historically used IBM mainframes tend to use either DB/2 or Oracle. MySQL is
normally found in startups and many web development shops, mainly because it is
easy to get started with MySQL and the licensing is relatively lenient. Organizations
that have adopted the Microsoft develoment stack will use SQLServer. PostgreSQL
is a practical, open source alternative for organizations that use DB/2, Oracle or
SQLServer.

A legacy application might use a different relational database, but in most cases the
simple queries you will need for database archeology will work with most databases.
In practice however, since the above five databases have been in the market for well
over 10 years, most legacy systems that need to be replaced are usign one of the
above databases.

2.1 Sample Database is in PostgreSQL

All the examples and exercises in this book were written and tested against the Post-
greSQL database. PostgreSQL closely follows the SQL Standard, so queries written
for PostgreSQL will be close to the SQL syntax required by the other databases.

8

2.2. INSTALLATION INSTRUCTIONS 9

Another part of the rationale for using PostgreSQL in this book is that the adoption
of PostgreSQL is increasing over time. While it still has a smaller installed base
than Oracle, SQL Server or MySQL, it is now seen as a viable replacement for
any of those databases. In part this adoption is due to the availablity of low cost
implementations on the various cloud provider platforms. This is aided by the
ease of creating local installations without the need to get puchasing and licensing
approval.

PostgreSQL can be installed for free on practically any laptop, regardless of whether
they are running Windows, OSX or Linux. This means that it is feasible (and
expected) that you the reader install PostgreSQL on yor laptop and follow along
with the exercises. While you can get an appreciation for the syntax of SQL by
reading someone else’s SQL statements, it is only by writing SQL that you will
really begin to understand what you can achieve with SQL.

2.2 Installation Instructions

Rather than include quickly outdated installation instructions the sim-
plest way to get PostgreSQL installed is to follow the instructions at
http://www.postgresqltutorial.com/install-postgresql/. After installing Post-
greSQL you can also download the sample database that is on that site, as it is
used in some of the examples in this book. Sample database is available from
http://www.postgresqltutorial.com/postgresql-sample-database/.

Note. Looking at the history of the DVDRental database, it has been
migrated from other systems, so should be OK to use it. Also it is
amusing to use from the point of view of this book since DVD Rental
business has been superceded these days, so it is a good example of or-
ganizational data that is obsolete, yet contains useful information. Sent
email to postgresql tutorial maintainers early March 2019, no response
yet.

Will need to host the version of the DVDRental sample database on a URL related
to the book likely on ImprovingWetware.com website.

2.3 Post-Installation Test

To test that the installation of PostgreSQL succeeded and that the sample database
is available, please launch the pgAdmin tool and under the Tools menu, select the
Query Tool and enter the following SQL query. After you have completed typing
the query, click the lightning bolt icon to have the query run.
select * from category
order by name

You should see output from this query similar to that shown in Table 2.1, but with
a few more rows. If however you see an error message instead, first check for obvious

http://www.postgresqltutorial.com/install-postgresql/
http://www.postgresqltutorial.com/postgresql-sample-database/

10 CHAPTER 2. A SAMPLE DATABASE

Table 2.1: First five rows from category table
category_id name last_update
1 Action 2006-02-15 09:46:27
2 Animation 2006-02-15 09:46:27
3 Children 2006-02-15 09:46:27
4 Classics 2006-02-15 09:46:27
5 Comedy 2006-02-15 09:46:27

typos, and then read the error message to see if it gives you any useful hint as to the
problem. In most cases it will try to show the line and point to the first character
of the word where it could no longer understand the query syntax.

2.4 Sample Database is now available

At this point you are ready to start looking inside the database server to see what
data is hidden there.

Note. If your organization uses PostgreSQL then all you will need to
do different to query data from one of your test or production data-
bases is to get the connection information and a username/password
from your database team. If your organization uses a different data-
base technology, then you will need to download an appropriate client
application and connect with the relevant connection information and
username/password.

When starting out with your exploration of a database, it is always best if possible
to connect to a test database server rather than the production server. This avoids
any problems of putting extra load onto a possibly heavily loaded production server.

Chapter 3

Database Concepts

This chapter covers the database concepts and terminology that you need to know
in order to be able to use SQL to extract data from databases. Most of it is only
useful to people who need to manage the databases, but a certain amount of jargon
is necessary to talk to the other users of the database. For the most part the
terminology is intended to clarify meaning, but it can be confusing the first time
you come across it.

Rather that going too far into defining the terminology, it is simpler to just use
it and allow you to understand the meaning from the context of the discussion.
Precision is necessary sometimes, but most of the time when we use a word like
database, from the context we can determine whether we mean

• the brand of database software we are using
• the database server we are connecting to
• the database instance or schema we are interacting with

Although we can interact with most databases from various front ends, in practice
it is often easiest to use the client software that comes with the database server
to connect to the database. With PostgreSQL that means that we either use the
commandline psql or the graphical pgAdmin to connect to our database server. To
connect to the server you typically need to know which machine it is running on,
the network port to use, a username and password and the name of the database
schema that we want to interact with. (Just for confusion, some database brands
use the term instance where postgreSQL uses schema).

3.1 Database Schemas

Most database servers have multiple databases running inside. Any useful post-
greSQL server will have a minimum of two databases, postgres which holds system
related information and the application specific database, dvdrental if you have
installed the sample from the previous chapter.

11

12 CHAPTER 3. DATABASE CONCEPTS

Figure 3.1: databases

As a practicing Business Analyst, the first thing you want to know about every
database server is which application databases are running on that server, as well
as some valid credentials that will let you explore those databases. The server
browser in pgAdmin makes this trivially easy, because it shows the databases that
are running in the database server.

In this example there are 4 databases, two of which are not connected, plus dvdrental
and postgres.

In a corporate context, a Business Analyst will only be granted access to the da-
tabases that are needed for the job at hand, so get used to the idea of seeing the
names of a lot of other databases that you do not have access to.

If the application designers did a reasonable job, an application will use one or more
databases to store the data related to that application. There may be multiple
databases if the application is split up into fairly distinct modules, or it might all
be contained within a single database. Older applications will tend to have a single
database, but the idea of using multiple databases to separate out differenct subsets
of data is becoming a common idea. Having multiple databases also makes it easier
to control access to the data by different users. Access to specific tables can be
granted to an individual user, but it is much simpler for the database administrators
to just grant complete access to a database while restricting access to another.

3.2. DATABASE TABLES 13

3.2 Database Tables

A relational database stores the data in tables, and any reasonably complex applica-
tion will have many different tables, typically hundreds of tables, which makes the
dvdrental database look like the toy it is. Each table within a database has to have
a unique name, and hopefully that name has some meaning with in the application
domain. Sometimes we are lucky and this is relatively true, other times the table
names seem to have been purposefully made either cryptic or generic. Hopefully
however by reading over the table names you can get a sense of the information
that the application is remembering for the business.

The simplest way to think of a table is as a spreadsheet with a twist. Each column in
the spreadsheet has a unique name (that hopefully is meaningful in the application
domain), AND a specific datatype (typicaly numbers, date/time or text) potentially
with interesting constraints (e.g. cannot be null, range or size limits, unique values).
Unlike spreadsheets, tables can have an unlimited number of rows, constrained only
by the speed of access and the usefulness of massive volumes of data. Within a
table, one column is normally designated as the primary key, and that column is
constrained to have guaranteed unique values – the database server will prevent
anyone from creating a row in that table with the same value for the primary key.

These primary keys are what make a relational database interesting for applicaton
development. As part of defining the columns in a table, you can define a foreign key
relationship with another table, whereby the column is constrained to only contain
values that are in the primary key column of another table. So a tables of Cities
could have a Country_id column that is contstrained to only contain values from
the primary key column of the Countries table which would be called either id or
country_id.

Relational databases have been around long enough that we could rea-
sonably expect that there would be an agreed convention for table and
column names, but of course there is not. Some database designers
make their table names plural nouns, others make them singular (as in
the dvdrental example). Some make the primary key column name be
just id, others use the singular version of the table name with a suffix
of _id.

3.3 Relationships between tables

The defined relationships between tables are what make relational databases inte-
resting. Each distinct type of information that a business needs to remember is
stored in a specific table, and if the database designer has thought to enforce refe-
rential integrity by foreign keys, we can guarantee that if we see a film_id in the
inventory table, then the associated information about the film exists in the film
table.

Some database designers choose not to enforce this referential integrity with foreign
keys, in which case the film might not actually exist. True the programmers are

14 CHAPTER 3. DATABASE CONCEPTS

meant to ensure that the appropriate records are created, but as everyone knows,
applications are not always correct, so bad stuff can happen. In the old days, not
enforcing the referential integrity with foreign keys meant that you could get slightly
better insert and update performance in the database, but that is irrelevant with
current computers. Yes, it might still help in the margin, but even on a cheap server
it is trivial to insert over 1,000 rows per second. Few commercial systems need that
sort of performance, especially when we consider that the tradeoff is incorrect data
in the database.

3.4 Third Normal Form Database Tables

Relational databases are not supposed to have repeating groups in a table. Admit-
tedly some database designers will try to cheat this by having column names in a
Orders table like item1, item2, item3 but this makes it really awkward if you end
up needing item4.

To work to the strengths of relational databases, what is done instead is to have two
tables, an Orders table and an OrderItems table with a foreign key relationship
back to the Orders table. The database can then store an unlimited number of
items for an order.

Overall the main design principle for relational databases is that as a minimum the
database tables should be in Third Normal Form, where each column in a table
depends on the primary key, the whole key and nothing but the key. There are
higher normal forms, where it can seem that all we can find in any row of a table
is a single value and a foreign key, but as far as querying the database, the queries
are the same, we just will have to select data from more tables when the tables are
higher than Third Normal Form.

Might need more details here or a reference

Chapter 4

Basic SQL

Structured Query Language (SQL) is the main way of accessing a relational da-
tabase. For our purposes, the only verb that a Business Analyst needs for doing
database archeology work is the select verb of SQL. If we were going to also consi-
der modifying the contents of a database, we would also need to be concerned about
the insert, update and delete verbs, but for the initial business analysis tasks,
we do not need to know them yet.

At the most basic, a SQL query just selects a number of rows from a table, potentially
with ordering applied to the result set as per this example shown in Table 4.1.
select * from category
order by name asc
offset 4
limit 3

This query also has a limit clause that limits the number of rows returned in the
result set from the query. This is very important when first exploring a database,
because we might be executing a query on a large table, and returning a few million
rows when we are just trying to see what kind of data is in the database is not
very useful. PostgreSQL has basic windowing built into the SQL queries using the
limit clause, but means of the offset keyword. Specifying offset 4 means that
the returned result set will skip over the first 4 rows and start showing the data
from row 5 onwards. The database server still has to process the query in detail to
get to the 5th row, so there are better ways to limit the result set, but as a quick
and dirty option this works well.

The select * from category part of the query requests every column from the
category table. Normally you would explicitly name the columns that you are
interested in as a comma separated list, but specifying every column is a convenient
starting point when you are just trying to get a sense of what is in the table.

The order by clause can name one or more columns, and for each column the orde-
ring can be ascendin or descending, the default is asc. When specifying multiple
columns for the ordering, the column names must be separated by a comma, order

15

16 CHAPTER 4. BASIC SQL

Table 4.1: 3 records
category_id name last_update
5 Comedy 2006-02-15 09:46:27
6 Documentary 2006-02-15 09:46:27
7 Drama 2006-02-15 09:46:27

by name asc, last_update desc.

For a large result set the sorting necessary to fulfil the ordering can be a slow
operation. Normally a query just returns the first rows it finds, so a simple query
on a million row table is fast when we limit the result set to just three rows. When
there is an order by clause, the query can still be fast if there is an appropriate
index that the database server can use to traverse the data in the required sequence.
Without a suitable index, the database server has to read the entire million rows
and then sort the data by the columns specified in the order by clause. The result
set may still come back in reasonable time, but when first investigating a table,
omit the order by clause unless you know that the result set is going to be small
or there is an appropriate index.

From the viewpoint of Database Archeology we will not be creating any new indexes
to support any slow running queries. Any new index in a database has to be ap-
proved by the appropriate Database Administrator, because in a corporate context,
you have to know who is making changes to the structure of the database. For
our purposes the thing to remember is that when we have two seemingly similar
queries that take completely different times to return the result set, the faster query
is likely to be supported by the existing indexes, or is on a very small table which
the database server can load into memory.

Note. To a large extent, the available indexes determine the Data Access
Paths that are supported by the application. For small tables, say less
than 1 million rows, a complete scan of the table might complete in
reasonable time. For larger tables, a complete scan looking for relevant
records is likely to be too slow for most users, effectively making that
data acccess path unusable.

4.1 Selecting specific columns

In the previous query, the * shows all the columns in the table category, but
typically we only need that option when we are trying to discover what data is in
a table or with a smaller table when we are feeling lazy. In most queries we will
be specifying the specific columns we want to see the data for as in Table 4.2. The
sequence of the columns that are selected does not have to match the sequence in
the table, so in this example the name is the first column selected.

By default the selected column name is used as the label in the result set, but
SQL allows column labels to be applied to the result set. These column labels look
like category_id as id, which applies the label id to the category_id column

4.2. CHOOSING THE DATA USING THE WHERE CLAUSE 17

Table 4.2: 3 records
name id
Sci-Fi 14
New 13
Music 12

name. These labels are useful for replacing the original column name with a more
descriptive name
select name, category_id as id from category
order by id desc
limit 3 offset 2

4.2 Choosing the data using the where clause

The where clause in a select statement allows us to specify the data that we are
interested in from the table. At the most basic level we just specify the column
values we are interested in the where clause. For number and date columns, we can
test for equality =, less than a value <, and more than a value >.
select name, category_id as id from category
where category_id = 3;

select name, category_id as id from category
where category_id < 3;

select name, category_id as id from category
where category_id > 3;

Sometimes we will end up wanting to select records matching more than one value,
in that case the simplest way to do this is to use the keword or to link the clauses.
We can also use the keyword and to link the clauses if the values are in different
columns.
select name, category_id as id from category
where category_id = 3
or category_id = 4;

select name, category_id as id from category
where category_id = 3
and name = 'Children';

Note. It is safest to always bracket the conditions when you have a
mixture of and and or, because there is a lot of difference in the results
between (A and B) or C and A and (B or C). Without the brackets it
is really easy to waste a lot of time trying to figure out why the result
set is not quite what we expect.

18 CHAPTER 4. BASIC SQL

Another way of selecting multiple records from the same column is to use the in
keyword. This is functionally equivalent to a set of equality tests linked by the or
keyword, but much easier to read and understand. Later on we will see more ways
to use and abuse the in keyword, but for now we will restrict our usage to literal
values.
select name, category_id as id from category
where category_id in (3,4);

select name, category_id as id from category
where name in ('Children', 'Action');

4.2.1 Excluding specific values

SQL has multiple ways of specifying not equal to, but if we see anything other than
the first two forms below it is a sign that the person who wrote the query needs
to be taken away from their keyboard. The normal recommendation, when faced
with two bits of syntax that have exactly the same meaning such as != and <>, is
to pick one and never ever use the other. Using a mixture of the two is more or
less a guaranteed path to confusion.
select name, category_id as id from category
where category_id != 3;

select name, category_id as id from category
where category_id <> 3;

select name, category_id as id from category
where category_id not in (3,4,5);

select name, category_id as id from category
where not category_id = 3;

4.3 Partial matching on text columns

When working with text columns, we will often need to do a partial match and
PostgreSQL provides plenty of options for this

• like
• similar to regular expressions
• POSIX regular expressions

Most of the time we will only ever need to use like, but there is occasionally a need
for similar to as will be seen in a later chapter. Business Analysts should stay a
long way away from POSIX regular expressions unless they aspire to becoming a
UNIX programmer.

4.3. PARTIAL MATCHING ON TEXT COLUMNS 19

Table 4.3: 2 records
name id
Action 1
Animation 2

The like expression does a pattern match based on the idea that % matches any
sequence of zero or more characters, and _ matches any single character. So the
queries below find all rows where the name begins with the uppercase letter ‘A’, all
rows that have a name containing a lowercase letter ‘a’, and the last one finds all
rows where the name has a lowercase letter ‘a’ in the second position.
select name, category_id as id from category
where name like 'A%';

select name, category_id as id from category
where name like '%a%';

select name, category_id as id from category
where name like '_a%';

The difference between the last two queries is that _ matches a single character,
meaning that it is checking for an ‘a’ in the second position of the string, while %
matches any number of characters, so it will match a string with ‘a’ in the first,
second, third, fourth, etc positions. It will not match against the name ‘Action’
however, since strings in PostgreSQL are case sensitive, but it will find ‘Animation’
since there is an ‘a’ further down the string.

Although , the matching can be made case insensitive using the keyword ilike, so
this query finds any row where the name starts with a letters ‘A’ or ‘a’. Table 4.1
select name, category_id as id from category
where name ilike 'a%';

There is of course a not like option, the first one is the more conventional way of
writing it, but the negation form shown second gives an equivalent result. The third
query with the criteria in brackets, (name ilike '%a%'), makes it clearer what is
happening.
select name, category_id as id from category
where name not ilike '%a%';

select name, category_id as id from category
where not name ilike '%a%';

select name, category_id as id from category
where not (name ilike '%a%');

20 CHAPTER 4. BASIC SQL

4.4 Indexes on Tables

Although relational databases do not require any table indexes, to get realistic
performance, indexes are required to speed up access. For each criteria in a query,
the database has to scan through the table checking which values in the table rows
match the criteria. This works if the table is small enough to be held in memory,
but when the tables are larger, a full scan takes O(n) time. This effectively means
that if a scan though a 1 million row table takes 12 seconds, then scanning through
a 10 million row table would take about 2 minutes.

When the table has an index on a column, the index is effectively a shortcut way to
access individual values, giving an access time of the order of O(ln(n)). This means
that if searching for a row in a 1 million row table takes 1 second, searching a 10
million row would maybe take 1.2 seconds.

Typically you will find an index on all columns that are named in a where clause
of a query, so the presence of an index highlights the existence of a common data
access path.

Chapter 5

Basic Database Archeology

The most basic question that you will first need answering about a database is the
Business Concepts that it supports. To get the anser to this, you need to be able
to get a list of all of the table names that are in the database. Unfortunately this
is implemented in a database vendor specific manner, so you will need to look up
in the documentation how to list out the table names.

Note. The pgAdmin GUI shows the list of tables in the DVDrental
database, but sometimes you will want to extract the names of the
tables to use elsewhere.

For the example PostgreSQL database, the SQL is relatively simple to list out the
catalog (dvdrental) for the public schema results are in Table 5.1.
select table_catalog, table_schema, table_name
from information_schema.tables
where table_schema = 'public'
and table_type= 'BASE TABLE'

order by table_name
limit 6

Note. Obviously when you run this query, you will not want to limit the
result set to just six rows, but constraining the result set makes it easier
to show in this book. Real applications are likely to have anything from
20 to 2000 tables, but for your sake I hope that you never have to deal
with a 2000+ table database.

5.1 Business Concepts

Looking at the full list of table names returned by this query, most of the concepts
you would expect to see are there customer, rental, store and the missing dvd
concept is likely split between film and inventory.

21

22 CHAPTER 5. BASIC DATABASE ARCHEOLOGY

Table 5.1: Tables in DVDrental
table_catalog table_schema table_name
dvdrental public actor
dvdrental public address
dvdrental public category
dvdrental public city
dvdrental public country
dvdrental public customer

The two strange table names film_actor and film_category represent the way
that a relational database needs an extra table to represent a many to many relati-
onship when constrained to be in Third Normal Form. So rather than having a list
of actors inside a film and a list of films in every actor, there is a separate table
that lists the pairings of (film, actor) and (film, category).

As noted in Chapter 3, in the section Database Tables, the table names in your
database may be relatively clear, cryptic or generic, so you are likely to have to
make notes about some table names to explain the udnerlying business concept. If
you come across some table names that look pseudo-random (xrq189576786) or
have what could be a date in the name (actor_20061203) you will likely need to
have a conversation at a later date with your DBA or one of the developers to
understand how that table is used. For now though just note the strange name and
leave a question mark beside it.

Table Business Concept
Customer Person who rents a DVD from one of

our stores
Film Title of a DVD, will have zero or more

copies of a film in the inventory of a
store

Inventory A physical DVD that can be rented
from a store, details about the film are
stored in the film table

film_actor ?
film_category ?

5.2 Data Attributes

Once you have identified the main business concepts, the next thing you need to do
is look at the data attributes associated with each of the concepts. As with getting
a list of the tables, the list of columns and their data types is database vendor
specific.
SELECT table_name, column_name, is_nullable as nullable,
udt_name, character_maximum_length as size

FROM information_schema.COLUMNS
WHERE TABLE_NAME = 'customer'

In Table 5.3 you can see that this database uses the customer_id approach for the
primary key, and by using a 32-bit integer for the key are guaranteed not to hit any
limit. (int4 means that a 4 byte interger is used for customer_id)

A Customer has to have a first_name and a last_name, but the email can be
nullable so it is optional. The size column in the query result shows the number
of characters allowed for the text (varchar) columns, so this database is allowing
up to 45 characters for the first_name column.

5.3. DEFAULT VALUES 23

Table 5.3: Customer Table Columns
table_name column_name nullable udt_name size
customer customer_id NO int4 [null]
customer store_id NO int2 [null]
customer first_name NO varchar 45
customer last_name NO varchar 45
customer email YES varchar 50
customer address_id NO int2 [null]
customer activebool NO bool [null]
customer create_date NO date [null]
customer last_update YES timestamp [null]
customer active YES int4 [null]

Table 5.4: Customer Table Column Defaults
table_name column_name column_default
customer customer_id nextval(’customer_customer_id_seq’::regclass)
customer activebool true
customer create_date (’now’::text)::date
customer last_update now()

You will need to build you a data dictionary for the set of tables that you are
interested in. The output from the query for each table can be used as the starting
point, with extra details added as you discover more information about the way
that the column is used. Some columns may not need any more information that
just the column name, others should be left with a ? if the reason for that column
is unknown as a hint for future conversations with the development team.

5.3 Default Values

Another bit of information that can be extracted from the database schema is infor-
mation about the default values (if any) for the various columns. Table 5.4 shows
that the customer_id is populated automatically using the next value from a data-
base sequence customer_customer_id_seq1. This guarantees that the customers
are numbered uniquely, and there does not need to be any application logic to ens-
ure that the customer id numbers are unique. The date columns are also set to the
current time (now), the different formats for the default being because one is a date
field and the other is a timestamp (which includes the date and time).
SELECT table_name, column_name, column_default
FROM information_schema.COLUMNS
WHERE TABLE_NAME = 'customer'
and column_default is not null

1nextval advances the sequence and returns the new value https://www.postgresql.org/docs/
9.6/functions-sequence.html

https://www.postgresql.org/docs/9.6/functions-sequence.html
https://www.postgresql.org/docs/9.6/functions-sequence.html

24 CHAPTER 5. BASIC DATABASE ARCHEOLOGY

5.4 Looking at the Data

At this stage, with a complete list of the tables in your database, it can be useful to
look at the first few rows in each table, just to get a sense of what is in each table.
select * from customer
limit 10;

Just running a query like this on each table in the domain gives you a feeling for the
overall domain. The query result will give you a feel for the difference between the
date column create_date (“2006-02-14”) and the timestamp column last_update
(“2013-05-26 14:49:45.738”) in the customer table.

If you learn anything interesting about the data in the tables, then it can be good
to go back to the data dictionary you are building for the tables and add that
information into your data dictionary.

Chapter 6

Pulling Data From Multiple
Tables

The real power of SQL comes from the ability to select data from multiple tables
and combine it in interesting ways. This is done in a query by specifying a join
condition that specifies which rows are wanted from the related table. We specify
the rows we want by specifying which columns are expected to have what values,
just like the where clause, but when relating tables we use a join clause.

The simplest form of a join is an Inner Join where rows from the joined table are
only included if they meet the criteria specified. In the example below, a city is
only shown if there is a match on the country_id column with the current country
row value, as shown in Table 6.1. The inner keyword is optional and is normally
omitted, so the query just has the join keyword rather than the more verbose
inner join.
select country.country,
city.city

from country
join city on city.country_id = country.country_id
limit 5;

Note. It is important at this point to always prefix any column name
with the name of the table that the column belongs to. In the above
example, it is not stictly required by PostgreSQL that you prefix the
column names in the select list, but if we omit the table names in
the join clause there will be an error of the form column reference
"country_id" is ambiguous. But we should prefix the column names
even when PostgreSQL does not require it, so that our future selves,
when looking at the query a few days later, will know which table the
column is being selected from. In this simple toy query the table names
are obvious, but we need to cultivate the habit now so that we do not
run into problems later with more complex queries.

25

26 CHAPTER 6. PULLING DATA FROM MULTIPLE TABLES

Table 6.1: Displaying records 1 - 5
country city
Afghanistan Kabul
Algeria Batna
Algeria Bchar
Algeria Skikda
American Samoa Tafuna

Table 6.2: Inner Join results
country city
Canada London
United Kingdom London

With an Inner Join the result set only includes rows where the join condition is
satisfied. So a country without any cities would not appear in the result set. More
importantly it excludes the Countries when the join condition is more complex, as
in this query that finds just those countries where there is a city named ‘London’
as in Table 6.2.
select country.country,
city.city

from country
join city on city.country_id = country.country_id
and city.city = 'London'

limit 5;

All of the where clause constructs from the Basic SQL chapter are valid for use in
a join clause, so we can filter the result set based on any column in the joined
table.

6.1 Other types of joins

There are several, but for now we will only look at the Inner Left Join, which includes
the rows that are missing from the Inner Join because there are no matching rows
in the joined table. For a left join the only difference from the previous query
is the addition of the work left which requests that the query return rows from
the main table even when the joined table does not have any matching rows. The
results in Table 6.3, where we only return the values for the city table when the
city is called ‘London’, otherwise we return null which is the SQL way of stating
that there is nothing there.
select country.country,
city.city

from country
left join city on city.country_id = country.country_id

6.2. JOINING MULTIPLE TABLES 27

Table 6.3: Left Join results
country city
Afghanistan [null]
Algeria [null]
American Samoa [null]
Angola [null]
Anguilla [null]

and city.city = 'London'
limit 5;

Warning. null is weird. It denotes the absence of data, so it has some
weird properties. We cannot compare a value to null like we can with
any other value a where clause of where city = null will never return
any rows, neither will where city <> null. The only way we can
test for the presence of null is to use the special is operator, as in
where city is null or where city is not null. There is other
weirdness associated with null, but that will be covered later. The null
columns are displaying as ‘NA’ in the book, seems to be an artifact of
how R treats the null value, to resolve before sending out copies edit the
ltw.tex file and compile from the top level directory so that it can see the
images etc. This generates a correct pdf with null displayed (just have
to replace all the NA with null and remove this part of the paragraph
from the .tex file.

6.2 Joining multiple tables

The beauty of relational databases is that SQL allows us to follow the relationships
between the tables to pull out the information we are interested in. To do this we
just add in another join clause specifying the table to be joined into the query and
the condition that we want to include the data with. The sample below finds the
street addresses in all cities called ‘London’ in all countries. The results in Table
6.4.
select country.country,
city.city,
address.address,
address.district

from country
join city on city.country_id = country.country_id
and city.city = 'London'

left join address on address.city_id = city.city_id;

We can keep on adding extra table to our query by just adding an extra join clause
for each table. As we add each extra table the database server has to do more work
to find the rows we are interested in, so the performance will degrade somewhat,

28 CHAPTER 6. PULLING DATA FROM MULTIPLE TABLES

Table 6.4: 3 records
country city address district
United Kingdom London 1497 Yuzhou Drive England
United Kingdom London 548 Uruapan Street Ontario
Canada London NA NA

but the worst case is that we have to wait a while for the data to be returned
by the query. The upper limit tends to be limited by what makes sense as far as
the application domain is concerned, and our understanding of the relationships
between the various tables.

6.3 Table aliases

When reading complex queries, we often come across table aliases. A table alias has
the same effect as a column label, in that it introduces a new name for the table.
Although providing an alias for a table can save typing when the table names are
long, aliases can also add confusion when reading a SQL query. All the alias does
is introduce another name that has to be remembered and referenced back to the
original table so that we know what it represents. The query below is functionally
the same as the one above, but it is harder to comprehend because of the extra
names that are introduced. The results are the same as those in Table 6.4.
select cntry.country,
cty.city,
addr.address,
addr.district

from country cntry
join city cty on cty.country_id = cntry.country_id
and cty.city = 'London'

left join address addr on addr.city_id = cty.city_id;

My personal preference is to initially use the complete table name without any
aliases, and only when I am really familiar with the database design to adopt a few
abbreviations for the most commonly queried tables. Single letter abbreviations,
although we see them in programmer queries all the time are a mistake – does ‘c’
refers to city, country, customer or category.

When the selected columns make the first line of a query too long to read easily,
split it up over multiple lines with each selected columm on a separate line, as has
been done since we left Chapter 4 Basic SQL.

Chapter 7

Database Archeology -
Relationships

With Relational Databases in the Third Normal Form, there is a lot of useful infor-
mation that can be gained by looking at the logical connections between the various
tables. These connections are made between values in columns of a table and the
value in a Primary Key of another table. These logical connections can be enforced
by the database as Foreign Keys, or they can just be a connection that is created
by a join clause in a query.

The cardinality of the relationship between tables reveals useful information about
some Business Rules encoded in the application. Optional relationships are suppor-
ted in databases by allowing the relevant column to be nullable. Databases typically
do not support upper limits to the cardinality of a relationship, but an upper limit
may be encoded in the application code.

Cardinality Example Relationship
1:1 Each store must have one and only one manager
1:0..1 If a film specifies a language, it can only specify one language
1:1..n Each store must have at least one staff working there
1:0..n For any film, there may be zero or more copies in inventory

As far as the Business Rules are concerned, it is important to know whether a
relationship is optional, and whether the upper limit for the cardinality is one or
many. You should note however that many relationships that initially look to have
an upper bound of one turn out over time to have more than one associated records.
So yes, a store must have one and only one manager, but over time many different
people could manage a different store.

Many older systems have this type of cardinality problem, whereby the current state
of the system is supported by the database, but information about past states of
the system cannot be recorded. Similarly future planned changes to the state of the

29

30 CHAPTER 7. DATABASE ARCHEOLOGY - RELATIONSHIPS

Table 7.2: Primary Keys
table_name primary_key_cols
actor actor_id
address address_id
category category_id
city city_id
country country_id
customer customer_id
film film_id
film_actor actor_id, film_id

system are not supported. For example, can we have a film in our database that
is not released yet, and how would we know that it is not released?

7.1 Primary Keys

The one side of relationships in relational databases is typically to the primary key
of a table. This primary key is normally a unique value, often the primary key is
on just a single column, but it can be across multiple columns. Depending on when
youir database was designed, the keys will either be artificial identifiers (an integer
or a GUID), or meaningful business values. In the DVDrental sample database, all
primary keys are made up of the artificial identifiers (with an interesting mix of 2
and 4 byte integers).

The query to get the primary keys contains a nested sub-query as part of the
list of queried parameters, and this sub-query uses string_agg to concatenate the
columns used in the primary key index. string_agg
select table_name,
(SELECT string_agg(kcu.column_name, ', ' order by ordinal_position)
FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE kcu
where kcu.constraint_catalog = tc.constraint_catalog and

kcu.table_name = tc.table_name and
kcu.constraint_name = tc.constraint_name) primary_key_cols

from INFORMATION_SCHEMA.TABLE_CONSTRAINTS tc
where tc.table_schema = 'public'
and tc.constraint_type = 'PRIMARY KEY'
order by table_name
limit 8

The results of the Primary Keys query are in Table 7.2. For the most part the
Primary Key column is named after the table name with a suffix of _id, and as we
saw in Chapter 5 in the section on Default Values, these are all populated using a
nextval from a database sequence. Another common idiom for maning the primary
key is just to call the primary key column id.

The film_actor table has a composite key over the actor_id, film_id columns

7.2. FOREIGN KEYS 31

to resolve the business problem that an actor can be in multiple films, and many
actors will appear in a single film. The film_actor table resolves the problem
of implementing many:many relationship between actor and film in a relational
database. The composite key ensures that an actor can only appear once in a film.

7.2 Foreign Keys

Databases normally use the term foreign key constraints to describe Foreign Keys,
and these constraints basically enforce that the address_id value that exists in the
customer table also exists in the address_id column in a row in the address table.

The query to identify the Foreign Keys in the DVDrental database is more complex
than the primary key query, as it needs to pull in two different sets of column names
that define the relationship between the tables. The results in Table 7.3 identify
the Primary Key table and the associated Foreign Key table.
select ut.table_name as PK_Table,
(SELECT string_agg(kcu.column_name, ', ' order by ordinal_position)
FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE kcu
where kcu.constraint_catalog = ut.constraint_catalog and
kcu.table_name = ut.table_name and
kcu.constraint_name = ut.constraint_name) Primary_Key,
tc.TABLE_NAME as FK_Table,

(SELECT string_agg(kcu.column_name, ', ' order by ordinal_position)
FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE kcu
where kcu.constraint_catalog = tc.constraint_catalog and

kcu.table_name = tc.table_name and
kcu.constraint_name = tc.constraint_name) Foreign_Key

from INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS rc
join INFORMATION_SCHEMA.TABLE_CONSTRAINTS tc
on tc.CONSTRAINT_NAME = rc.CONSTRAINT_NAME

join INFORMATION_SCHEMA.TABLE_CONSTRAINTS ut
on ut.CONSTRAINT_NAME = rc.UNIQUE_CONSTRAINT_NAME

where tc.table_schema = 'public'
order by ut.table_name, Primary_Key
limit 10

There are 18 foreign key relationships defined between the 15 tables in the
DVDrental database, so keeping all these relationships in your head at the same
time can be difficult. The way to work around this is to focus on a specific path
through the data that you are interested in. For example, both a customer and
a store both have an address, which has a relationship to city, so it should be
possible to write a query that finds out all customers who do not live in the same
city as their store.

Note. From the listing of the Customer Columns in Table 5.3 you can see
another possible relationship defined for a customer as it has a store_id
column. This relationship is not defined by a foreign key, as it does not

32 CHAPTER 7. DATABASE ARCHEOLOGY - RELATIONSHIPS

Table 7.3: Foreign Key Columns
pk_table primary_key fk_table foreign_key
actor actor_id film_actor actor_id
address address_id staff address_id
address address_id store address_id
address address_id customer address_id
category category_id film_category category_id
city city_id address city_id
country country_id city country_id
customer customer_id payment customer_id
customer customer_id rental customer_id
film film_id film_category film_id

appear in the results in Table 7.3. Since the store_id column is not nul-
lable, so it must have a value, you can write a query between customer
and store joining on the store_id to test if this logical relationship
really exists. Further conversations would be needed to discover if the
foreign key relationship is missing or whether the developers thought it
was not needed for the purposes of the application.

7.3 Table Indexes

Looking at the table indexes is a vital part of database archeology, as the indexes
identify the data access paths that have been optimized for the application. Each
index identifies a path through the database that is used by the application and
needs to be fast.

Primary Keys are automatically unique indexes in most databases, so as long as
you know the value of the primary key (film_id) for a film, you can look up the
details of that row quickly. But users do not know the internal identifiers for the
table rows, so alternate indexes are needed. These indexes will typically be on
business identifiers or business keys.

The query to access the indexes in a PostgreSQL database needs to access
the pg_catalog catalog, since this information is not available from the
INFORMATION_SCHEMA catalog. The query reports the columns covered by the
index and whether the index enforces unique values. The sequence of columns is an
important factor in a multi-column index because a query against a multi-column
index will not be used if the query does not specify a value for the first column
from the multi-column index. Some indexes are in Table 7.4

So with the rental specifying a rental_date, inventory_id, customer_id index,
so the index can be used when searching for a particular date, but if the query
specifies only the customer_id then this index would not be useful, as the database
would have to scan the entire index to check the third field for the value of the
customer_id.

7.3. TABLE INDEXES 33

Table 7.4: Table Indexes
table_name idx_cols unique
customer address_id FALSE
customer last_name FALSE
customer store_id FALSE
film fulltext FALSE
film language_id FALSE
film title FALSE
rental inventory_id FALSE
rental rental_date, inventory_id, customer_id TRUE
store manager_staff_id TRUE

With idxcols as (
SELECT tab.oid as tab_oid,
tab.relname as table_name,
idxnam.relname as index_name,
idx.indisunique, UNNEST(idx.indkey) as indatt

FROM pg_catalog.pg_namespace ns
join pg_catalog.pg_class tab on tab.relnamespace = ns.oid

and tab.relkind = 'r'
join pg_catalog.pg_index idx on idx.indrelid = tab.oid

and idx.indisprimary = false
join pg_catalog.pg_class idxnam on idxnam.oid = idx.indexrelid
where ns.nspname = 'public'),
cols as (
select tab_oid, table_name, index_name, indisunique, indatt,
row_number() over() as idx_order

from idxcols)
select
cols.table_name,
string_agg(attr.attname, ', ' order by idx_order) as idx_cols,
cols.indisunique as unique

from cols
join pg_catalog.pg_attribute attr on attr.attrelid = cols.tab_oid

and attr.attnum = cols.indatt
where table_name in ('customer', 'film', 'rental', 'store')
group by table_name, index_name, indisunique
order by table_name, idx_cols, indisunique

Note. This query has two new bits of SQL that are needed to deal with
the pg_catalog.pg_index table1, UNNEST and row_number() over().
These are needed due to the datatype of the pg_index.indkey column
that is an int2vector, which basically encodes an array of short integers
into one column (basically violating the Third Normal Form). UNNEST
generates the extra rows needed to split out the values from the array,

1https://www.postgresql.org/docs/9.6/catalog-pg-index.html

https://www.postgresql.org/docs/9.6/catalog-pg-index.html

34 CHAPTER 7. DATABASE ARCHEOLOGY - RELATIONSHIPS

Table 7.5: English Language Films
name title
English Academy Dinosaur
English Ace Goldfinger
English Adaptation Holes
English Affair Prejudice
English African Egg

and the row_number() over() generates a row number in sequence, so
that the order of the index columns is preserved when the query uses
string_agg.

The query results show that there is an access path that covers the other end of the
Foreign Keys. That is why the film table has a language_id index, this will allow
the set of English language films to be found by this index as shown in Table 7.5.
select language.name,
film.title

from language
join film on film.language_id = language.language_id
where language.name = 'English'
order by film.title
limit 5;

The Unique indexes identify business rules. The store index on manager_staff_id
enforces the rule that a manager can only manage one store, since that staff_id value
can only appear once in the store table.

The indexes on the rental table reveals the queries that are possible, the
inventory_id index means that it is possible to write a query to discover all the
times that DVD was rented. There is no equivalent index on customer_id, so
querying for all the DVDs that a customer has rented will require a table scan.

Chapter 8

Entity Relationship
Diagrams (ERD)

A key challenge in understanding a database is figuring out the relationships bet-
ween the various tables. From the list of relationships in Table 7.3, it is obvious
city.country_id = country.country_id is a possible join criteria.
select country.country,
city.city

from country
join city on city.country_id = country.country_id
limit 5;

But a picture makes it much more obvious. In this style of diagram, an Entity-
Relationship Diagram (ERD) conventionally the table name occurs in the top box
of each table symbol, and the column names occur below the table name. In this
variant of an ERD the Primary Key of the table is in the box below the table name,
and any Foreign Keys are listed below the primary key (and the crowsfoot symbol
appears against the line). Then below that the rest of the table columns are shown.

Figure 8.1: Country City Relationship

35

36 CHAPTER 8. ENTITY RELATIONSHIP DIAGRAMS (ERD)

The relationshps between the tables are shown as lines between the tables, the lines
link a primary key in one table to the foreign key in another table. The lines are
written with a crows foot on the foreign key side of the relationship to suggest that
there may be more than one row on that side of the relationship. So in the example
below, for each row in the country table, there can be many rows in the city table.

The presence of the foreign key relationship implies that every city must exist
within a country, but it is possible for a country not to be associated with any
rows in the city table. So on the crows foot end of the relationship there are zero
or more city rows for every country row. Sometimes the relationship will only
make sense if crows foot end of the relationship has one or more rows, for example
a Sales Order is incomplete if there are no Ordered Items associated with the Sales
Order.

The practical difference between these two types of foreign key relationships when
we are writing queries is that with One or More relationships we can use a plain
join, but with Zero or More relationships we might need to use a left join.
We would use a left join when we are primarily interested in reporting on the
country rows, but if the focus of the report is on the city rows, then join works
best since every city row is associated with a row in the country table.

A left join will always return at least as many rows as a join, but will return
more rows when the equivalent row in the city table is not in the database. The
differences between these two are shown in the results in Table 6.2. and Table 6.3.

8.1 Full Size Entity Relationship Diagrams

Any interesting database is going to have a LOT of tables, small applications can
have over 50 tables, larger applications can easily have hundreds of tables, so it is
important to have a means of visualizing the relatonships between these tables. Even
with a small database like the DVDRental, it is easy to lose your place when following
the relationships between the tables. The solution to this is to have a diagram that
shows the ALL links between ALL the tables, as in https://improvingwetware.com/
files/DVDRental.html. The picture in Figure 8.2 is a static version of the interactive
diagram. Note to selves, @pageref(fig:DVDERD) does not work as a second type
of link

The interaction that the web version of the diagram allows is that you can select
the links and the tables (click on a relationship line to turn the line red, click again
to remove the highlight.)

A printed version of the diagram does not really work for anything except wall
artwork. As the printed DVD Rental ERD shows, if it is small enough to fit on one
page, the print size borders on unreadable, and following a chain of relationships to
visualize a query with multiple joins is difficult.

Workarounds that have been tried include:

• using large format printing to print the diagram big enough so that it is
readable,

https://improvingwetware.com/files/DVDRental.html
https://improvingwetware.com/files/DVDRental.html

8.1. FULL SIZE ENTITY RELATIONSHIP DIAGRAMS 37

Figure 8.2: Sample DVDRental Data Model

38 CHAPTER 8. ENTITY RELATIONSHIP DIAGRAMS (ERD)

• just showing the table names, leaving the rest of the detail off the diagram,
• drawing multiple diagrams, each centered on a single key table and the rela-

tionshps to that table.

None of these work very well, a large format diagram means we need a suitable wall
near to the team working on the database, just showing the table names omits the
key information as to what column names are involved in each join, and multiple
diagrams means that we lose the big picture.

8.2 CASE Tools

One option that works in some circumstances is to use a CASE tool that has good
Data Modelling capabilities. Since the early 1990’s CASE tool vendors have been
claiming that their CASE tool can connect to a database and Reverse Engineer
the data model to produce an ERD. To some extent these claims were true, the
definition of the tables could be imported, we could examine the definition of a
table and regenerate the database on a different server or even on a different vendors
database.

What they could not do however was produce a decently readable diagram for
anything but small, toy databases. One early tool could produce a reasonable
diagram for a sample, ten table database, which was great for demonstrating the
capabilities of the tool. When it was connected to a 200 table database however,
the resulting ERD was a black mess of overlapping lines and boxes – completely
unreadable.

Modern CASE tools are probably better than the older ones for generating a rea-
dable diagram, but many have sidestepped the problem by just showing the relati-
onships from a single table, making it harder to see the big picture.

Unfortunately many organizations have also chosen not to invest in CASE tools, so
although using a modern CASE tool may be a feasible way of visualizing a database
design, it is not always a viable path.

8.3 An ERD is essential for understanding a large
database

An ERD is more or less a prerequisite for understanding a database design. Un-
fortunately, most projects either did not create one intitially or have not kept the
ERD up to date with any changes that have been made to the database. So as
a Business Analyst brought in to look at a project, the simplest thing to do is to
generate our own ERD.

This is possible because all databases contain details about the tables and their
relationships, otherwise the database software would not be able to work. The
DVD Rental ERD was produced by running a set of queries against the database to
identify the tables, columns and the relationships between the tables. Then using

8.3. AN ERD IS ESSENTIAL FOR UNDERSTANDING A LARGE DATABASE39

the Graphviz 1 open source graph visualization software toolset, specifically the dot
tool, an SVG image of the design was generated. This SVG image was then placed
into a HTML file and made interactive usign some simple Javascript and the D3.js2

javascript library.

The overall procedure is explained in detail in the appendix, with explanations
of the SQL queries used to get the table and relationship information out of the
database. Online there are current versions of the queries for PostgreSQL3, Oracle4

and SQLServer5 databases.

These scripts have been used to generate diagrams for up to 500 table databases,
and while viewing there ERD in a browser is not ideal, it is trivially easy to find a
table or column name and from there follow the relationships to other tables. As
long as we remember to highlight the tables and relationships we can visualize the
complete path. On one project with over 2,000 tables and over 4000 relationships,
generating the ERD took a significant time, but the diagram was usable in the
browser. The only problem with the very large diagram was that some relationship
lines turned out to be very long.

1http://graphviz.org/
2https://d3js.org/
3http://improvingwetware.com/files/PostgreSQLERDGeneration.sql
4http://improvingwetware.com/files/ErdCreation-specific.sql
5http://improvingwetware.com/files/ERDCreationSqlServer-2012-populated.sql

http://graphviz.org/
https://d3js.org/
http://improvingwetware.com/files/PostgreSQLERDGeneration.sql
http://improvingwetware.com/files/ErdCreation-specific.sql
http://improvingwetware.com/files/ERDCreationSqlServer-2012-populated.sql

Chapter 9

Learning The Domain

Starting with an ERD gives you a good starting point for your Database Archeology
exploration of the concepts used within the domain. In order to really learn about
the domain, you need to look at the actual data in the database.

9.1 How large are the tables?

A good place to start is to find out how large are the various tables. To do this
you need to use some of the various functions 1 that are available in PostgreSQL.
The count(*) function is the simplest of these, it just returns the number of rows
returned by that query. For this query rather than have the column named after the
function name, the construct as number_of_actors is used to rename the column.
select count(*) as number_of_actors
from actor;

You can do this type of counting to discover the cardinality of relationships. Another
relationship not shownon the ERD in Chapter 8 and not enforced by a Foreign Key
between the store and inventory on store_id. You can use the group by option
on the query to get the count of records per store_id, specificaly the inventory per
store, and a count of the unique (distinct) films. You can also get the average
number of copies of a film in each store. The * 1.0 is needed because the count
result is an integer, and when PostgreSQL divides two integers the result is also an
integer. Table 9.2 has the results of this query.
select store.store_id,

count(inventory.store_id) as inventory_count ,
count(distinct inventory.film_id) as num_films,
round((count(inventory.store_id) * 1.0) /
count(distinct inventory.film_id), 3) as avg_copies

from store

1https://www.postgresql.org/docs/9.6/functions.html

40

https://www.postgresql.org/docs/9.6/functions.html

9.2. WALKING THE DATABASE 41

Table 9.1: Number of actors
number_of_actors
200

Table 9.2: Inventory and films by store
store_id inventory_count num_films avg_copies
1 2270 759 2.991
2 2311 762 3.033

join inventory on inventory.store_id = store.store_id
group by store.store_id

9.2 Walking the database

A lot of useful information can be pulled from a database by doing a simple query
that answers the question, What are the X related to Y. For example, which actors
have appeared in English language films?

To get the answer to this query, you neeed to start with the language table, then
join that to the film table, from there to the film_actor and finally to the actor
table. One thing to consider when doing this type of query is that you can get very
large result sets, so when initially exploring, it is useful to limit the number of rows
returned by use of the limit keyword. Table 9.3 has the results of this query.
select language.name,
film.title,
actor.first_name,
actor.last_name

from language
join film on film.language_id = language.language_id
join film_actor on film_actor.film_id = film.film_id
join actor on actor.actor_id = film_actor.actor_id
where language.name = 'English'
limit 5;

9.3 Some joins are incorrect

Sometimes you will find that there is a match between some columns in different
tables, but that does not always mean that a join between these tables is a sensible
idea. The example below shows a join between the film and address tables, where
through an accident of the identifiers used for each table matching. Table 9.4 has
the results of this query.

42 CHAPTER 9. LEARNING THE DOMAIN

Table 9.3: English Language Actors
name title first_name last_name
English Chamber Italian Alec Wayne
English Chamber Italian Henry Berry
English Chamber Italian Rip Winslet
English Chamber Italian Gina Degeneres
English Chamber Italian Adam Hopper

Table 9.4: An Incorrect Join film to address
film_id title address
1 Academy Dinosaur 47 MySakila Drive
2 Ace Goldfinger 28 MySQL Boulevard
3 Adaptation Holes 23 Workhaven Lane
4 Affair Prejudice 1411 Lillydale Drive
5 African Egg 1913 Hanoi Way

select
film.film_id,
film.title,
address.address

from film
join address on address.address_id = film.film_id
order by film.film_id
limit 5;

You have to be careful when typing the SQL queries to make sure that you do not
type an incorrect column name, otherwise you can get an unexpected result set.
The problem arose because the _id columns are all of the same datatype, so if the
numbers are in the same range, then you can accidentally get a match. An obvious
fix for this is to use different number ranges for the identifier numbers, or to use a
large enough identifier that the identifiers are guaranteed to be more or less unique.

9.4 Common Table Expressions

The idea behind a Common Table Expression2 (or a with query) is to create a
temporay named table that can be used in subsequent queries. The line with
film_inventory as names the common table expression, so that it can be used
later select * from film_inventory.

The query below shows the list of films that are in inventory at both stores in Table
9.5. The film_inventory query is a left join between the film and inventory
tables, so a film will be in the result even if it is not in the inventory table. The
names of the columns in the common table expression query are the names available

2https://www.postgresql.org/docs/9.6/queries-with.html

https://www.postgresql.org/docs/9.6/queries-with.html

9.4. COMMON TABLE EXPRESSIONS 43

Table 9.5: Common Table Expression example
film_id title inventory_count num_stores

1 Academy Dinosaur 8 2
4 Affair Prejudice 7 2
6 Agent Truman 6 2
7 Airplane Sierra 5 2
9 Alabama Devil 5 2

to the subsequent queries, so the name num_stores is available to use in the query
rather than having to use the expression count(distinct inventory.store_id).

Using a where clause of where num_stores = 0 will find all films that are not in
inventory at any store, and querying for where num_stores = 1 will identify those
films that are only available at one store.
with film_inventory as (

select film.film_id,
film.title,
count(inventory.film_id) as inventory_count,
count(distinct inventory.store_id) as num_stores

from film
left join inventory on inventory.film_id = film.film_id
group by film.film_id, film.title

)
select * from film_inventory
where num_stores = 2
order by title
limit 5

These Common Table Expressions (CTE) are used extensively to make queries
simpler and more readable, adn can be used for writing what would otherwise be a
very complex query. A simple extension of the above query would be to add in the
category of the film.
with film_inventory as (

select film.film_id,
film.title,
count(inventory.film_id) as inventory_count,
count(distinct inventory.store_id) as num_stores

from film
left join inventory on inventory.film_id = film.film_id
group by film.film_id, film.title

)
select category.name,

film_inventory.title,
film_inventory.inventory_count

from film_inventory
join film_category on film_category.film_id = film_inventory.film_id

44 CHAPTER 9. LEARNING THE DOMAIN

join category on category.category_id = film_category.category_id
order by name, title
limit 5

It is possible to use more than one Common Table Expression in a query, and it is
possible for subsequent sub-queries to refer to previous CTE. In the example below,
the film_inventory CTE is as before, and it is used by the categories CTE, adn
then those two CTE are joined in the final query to product the list of categories,
the number of films in those categories and the inventory of those films, with that
list restricted to films that are stocked in both stores. Results are shown in Table
9.6.
with film_inventory as (

select film.film_id,
film.title,
count(inventory.film_id) as inventory_count,
count(distinct inventory.store_id) as num_stores

from film
left join inventory on inventory.film_id = film.film_id
group by film.film_id, film.title

),
categories as (

select category.name,
film_inventory.film_id,
film_inventory.title

from film_inventory
join film_category on film_category.film_id = film_inventory.film_id
join category on category.category_id = film_category.category_id

)
select categories.name,

count(categories.film_id) as films_in_category,
sum(film_inventory.inventory_count) as inventory_count,
round(avg(film_inventory.inventory_count),2) as average_inventory

from categories
join film_inventory on film_inventory.film_id = categories.film_id

and film_inventory.num_stores = 2
group by categories.name
order by categories.name
limit 8

With an ERD and the ability to run queries against the database, it is possible to
get a good idea of the overall domain. You do not need to know the full complexity
of SQL to be able to explore a database, basically all that is needed is the ability
to join tables, and group results to count, sum and avg (average) column values.

9.5. EXPLORING CARDINALITY 45

Table 9.6: Using two CTE in one query
name films_in_category inventory_count average_inventory
Action 44 257 5.84
Animation 46 285 6.20
Children 31 185 5.97
Classics 33 209 6.33
Comedy 34 202 5.94
Documentary 34 208 6.12
Drama 37 224 6.05
Family 36 215 5.97

Table 9.7: Cardinality statistics
minimum average median mode maximum
0 4.58 5 6 8

9.5 Exploring Cardinality

These aggregate queries allow you to get a good handle on the cardinality of the
relationships between the various business concepts. SQL supports min and max
to allow you to discover the range of values. The syntax to calculate the median
(middle) value and the mode (most common) value is a little awkward, but the benefit
is that PERCENTILE_CONT allows you to calculate quartiles or any other fraction.
with film_inventory as (

select film.film_id,
film.title,
count(inventory.film_id) as inventory_count,
count(distinct inventory.store_id) as num_stores

from film
left join inventory on inventory.film_id = film.film_id
group by film.film_id, film.title

)
select min(inventory_count) as minimum,

round(avg(inventory_count),2) as average,
PERCENTILE_CONT(0.50) WITHIN GROUP

(ORDER BY inventory_count) as median,
mode() WITHIN GROUP (ORDER BY inventory_count) as "mode",
max(inventory_count) as maximum

from film_inventory

The results in Table 9.7 show that the maximum number of copies of a film in the
database is 8, so if you were a customer you might have to wait for a long time to
see a popular DVD.

46 CHAPTER 9. LEARNING THE DOMAIN

Table 9.8: Full Text Query
film_id title

1 Academy Dinosaur
231 Dinosaur Secretary

9.6 Full Text Indexes

There is one special index in the DVDRental database, the index on the fulltext
column in the film table. This index is there to support search engine style, Full
Text Search3 across the title and description of the film.

A full text search in PostgreSQL is done using the tsvector and tsquery types. The
to_tsvector converts the normal text of the title and description into a tsvector

• Original Text: Academy Dinosaur A Epic Drama of a Feminist And a Mad
Scientist who must Battle a Teacher in The Canadian Rockies

• tsvector: ‘academi’:1 ‘battl’:15 ‘canadian’:20 ‘dinosaur’:2 ‘drama’:5 ‘epic’:4
‘feminist’:8 ‘mad’:11 ‘must’:14 ‘rocki’:21 ‘scientist’:12 ‘teacher’:17

You would not normally look at the tsvector format, but it is an alphabetically
sorted list of all of the words in the input text minus the stop words. The numbers
next to the words corresponds to the position(s) of the word in the original stream.
If epic occurred twice in the string, then it would show up as 'epic':4,22 in the
tsvector.

Without the index on the fulltext column, you would need to write a query that
did a full table scan to find the films that contain both canadian and dinosaur
somewhere in the title or descripton. So the where clause needs to build the appro-
priate tsvector and then check that against the relevant words. See Table 9.8 for
the results.
SELECT film_id, title FROM public.film
where to_tsvector(title || ' ' || description) @@
to_tsquery('canadian & dinosaur')

ORDER BY film_id ASC

With a Full Text Index on the fulltext column, the query is simpler to write, and
will run faster since it can use the index and does not need to scan the entire table.
SELECT film_id, title FROM public.film
where fulltext @@ to_tsquery('canadian & dinosaur')
ORDER BY film_id ASC

Note. The film table has a database trigger film_fulltext_trigger
that fires on insert and update to populate the fulltext column. This
trigger avoids the need for the developers to do anything to update the
fulltext column.

3https://www.postgresql.org/docs/9.6/textsearch.html

https://www.postgresql.org/docs/9.6/textsearch.html

9.6. FULL TEXT INDEXES 47

From a database archeology viewpoint, full text indexes are often missing features
in many existing applications. The applications are missing the functionality that
allows a user to do a search engine style query against the data in the application.
Many existing applications are missing description fields, since previously there
were no easy way to search text fields, so the text fields were omitted from the
applications.

Chapter 10

Database Views

As well as the tables, most databases also have views and materialized views, which
are effectively just queries that have been named and stored in the database. With
a materialized view the query is precomputed by the database and the results stored
in the database so that queries against materialized views would normally run faster
than queries against a normal view.

10.1 Views

In the DVD Rental database, there is a view called sales_by_store and it can be
queried just like a table. When you include the view name in a query, the database
has to run the underlying view query to get the results shown in table 10.1.
select sales_by_store.store,
sales_by_store.manager,
sales_by_store.total_sales

from sales_by_store;

The query that underlies the sales_by_store view is relatively complex and joins
eight different tables to get the result. The extra text to define the view1 is the line:

• CREATE VIEW sales_by_store as

All lines after that are just a normal SQL query that is using || to concatenate the
city and country with a , separating the two values.
CREATE VIEW sales_by_store as
SELECT (c.city::text || ','::text) || cy.country::text AS store,
(m.first_name::text || ' '::text) || m.last_name::text AS manager,
sum(p.amount) AS total_sales

FROM payment p
JOIN rental r ON p.rental_id = r.rental_id

1https://www.postgresql.org/docs/9.6/sql-createview.html

48

https://www.postgresql.org/docs/9.6/sql-createview.html

10.2. MATERIALIZED VIEWS 49

Table 10.1: Sales by Store from View
store manager total_sales
Woodridge,Australia Jon Stephens 30683.13
Lethbridge,Canada Mike Hillyer 30628.91

JOIN inventory i ON r.inventory_id = i.inventory_id
JOIN store s ON i.store_id = s.store_id
JOIN address a ON s.address_id = a.address_id
JOIN city c ON a.city_id = c.city_id
JOIN country cy ON c.country_id = cy.country_id
JOIN staff m ON s.manager_staff_id = m.staff_id
GROUP BY cy.country, c.city, s.store_id, m.first_name, m.last_name
ORDER BY cy.country, c.city;

Note. The ::text appended to the column names is to convert the
column values to the text datatype, but it is not actually needed for this
example.

As a Business Analyst, you would not normally create a view in a database, but
investigating the views that exist in the database gives a good idea of the complex
queries that are often required by the application.

10.2 Materialized Views

The syntax for creating a Materializsed View2 is more commplex since when you
create a view you also have to specify information about where the data will be
stored and when the view will be refreshed. Other than that though, you query a
materialized view exactly the same as any other view or table.

The one gotcha that exists for Materialized Views is that the data in the view can
be stale. This means that the data in one or mroe of the underlying tables has been
updated, but the view has not yet been refreshed. The end result of this is that a
query on a Materialized View may return old values for the data.

10.3 Listing the views

The query to get the list of views uses the INFORMATION_SCHEMA. Teh
query below just pulls the name of the view and the tables involved in the
view. If you want to see the query that underlies the view, include the column
views.view_definition in your query.

2https://www.postgresql.org/docs/9.6/sql-creatematerializedview.html

https://www.postgresql.org/docs/9.6/sql-creatematerializedview.html

50 CHAPTER 10. DATABASE VIEWS

Table 10.2: List of Views
view_name tables
actor_info actor, category, film, film_actor, film_category
customer_list address, city, country, customer
film_list actor, category, film, film_actor, film_category
nicer_but_slower_film_list actor, category, film, film_actor, film_category

select views.table_name as view_name,
string_agg(vtu.table_name, ', ') as tables

from information_schema.views
join information_schema.view_table_usage vtu
on vtu.view_name = views.table_name
and vtu.view_schema = views.table_schema

where views.table_schema = 'public'
group by views.table_name,

views.view_definition
order by views.table_name,

views.view_definition
limit 4

10.4 Understanding Views

As a business analyst, the value of the various database views is that they name
common queries, and hence data access paths, that are used in the application. For
all views you can look back at the ERD to see how the query underlying the view
accesses the underlying tables.

Some applications will have a lot of views in the database, others will have very few.
Often this is due to the use of toolsets that make it hard to write complex queries,
so the queries are encoded as views in the database.

From a database archeology viewpoint, understanding how the various views are
used will require conversations with the development team. You may find that like
the sales_by_store view, that there are lots of views created for a single, specific
purpose. That view gives the total sales by store over all time, but it cannot give
weekly, monthly or quarterly sales figures.

Chapter 11

Business Analysis and
Database Archeology

Once you have a good handle on the problem domain, you can start working on a
deeper level of business analysis by looking deeper into the contents of the database.
At this level of database archeology you are looking at the data to gain a deeper
understanding of the business, from the data that has been recorded to date.

In a way this is using the ideas of Big Data to ask interesting questions of the
existing data to discover information about the overall business.

Note. The DVDrental database contains synthetic data that does not mi-
mic a real world application, so the sample data returned by the queries
will not be representative of what you would see in a real application.

11.1 Transaction Rates

It is possible to get insights about a business from the rate of transactions over time.
Some businesses are very seasonal, or affected by promotions, in others the problem
is more fine grained with the need to match resources to demand. An example is
the number of active cashiers in a supermarket, when you have a lot of customers
in the store, you need a lot of open checkouts, and at quiet periods you need less
open.

Since the rental table has a rental_date column, you can use that to identify busy
parts of the day. This is done by using either date_part('hour', rental_date)
or extract(hour from rental_date), since for some reason PostgreSQL has two
equivalent methods to extract part of a date1. Using either of these methods, the
query will have the hours of the day extracted as a number in the range 0..23, and
then you can count the number of rentals in that hour. The results shown in table
11.1 show the artificial nature of this dataset.

1https://www.postgresql.org/docs/9.6/functions-datetime.html

51

https://www.postgresql.org/docs/9.6/functions-datetime.html

52 CHAPTER 11. BUSINESS ANALYSIS AND DATABASE ARCHEOLOGY

Table 11.1: Rentals by hour of day
hours rentals
0 694
1 649
2 630
3 684

Figure 11.1: Transaction Rates

with rentals_by_hour as (
select date_part('hour', rental_date) as hours,
inventory_id

from rental
)
select hours,
count(inventory_id) as rentals

from rentals_by_hour
group by hours
order by hours

Importing the query results into Excel and then generating a graph shows that the
rentals are effectively randomly distributed thoughout the complete day.

While this might be caused by merging the data from different stores which are
in different time zones, rerunning the query for a single store gives essentially the
same flat plot, just with smaller numbers. When looking at real transaction rate
data you should see one or two clear peaks in the graph.

11.2. INVESTIGATING DURATIONS 53

• If the peaks look clipped with roughly the same value continuing for a few
hours, then the transaction rate is likely limited by some capacity constraint.

• Two peaks are a signal that you need to do some further investigation as to
the nature of the business

• If there are no clear peaks then you might need to split the data out by day of
week (date_part('dow', rental_date)) as well, to see if there is a pattern
by day of week and hour. The query in the common table expression would
then return hours in the range 0..167. It may be that in you see a distinct
pattern by day of week

select date_part('hour', rental_date) +
(date_part('dow', rental_date)* 24) as hour_of_week,

inventory_id
from rental

• Another cause of no clear peaks is having insufficient data over which to
identify any trends or patterns within a day. If this is true then group your
data by day, week, month or quarter to see which is appropriate to use.

Related to the transaction rates, you can do similar queries across the payment
table to measure the income in a period
with payments_by_week as (
select date_part('week', payment_date) as weeks, * from payment

)
select

weeks,
sum(amount) as payments

from payments_by_week
group by weeks
order by weeks

The analysis of these payments queries results is effectively the same as the tran-
saction rates queries, just with different people interested in the results.

11.2 Investigating Durations

Looking at the rental table, there are two business events recorded, the
rental_date and the return_date, so provided the return_date is not null,
the duration of the rental can be calculated. Unlike other database systems,
PostgreSQL provides a nicely formatted interval datatype to display the results
in the format d days hh:mm:ss as in Table 11.2.
select customer_id, rental_date,
(return_date - rental_date) as duration

from rental

The interval datatype can be used with the grouping functions to find the avg, min
and max, though when doing calculations on a set of intervals, you might need to

54 CHAPTER 11. BUSINESS ANALYSIS AND DATABASE ARCHEOLOGY

Table 11.2: Rental Durations
customer_id rental_date duration

459 2005-05-24 22:54:33 3 days 20:46:00
408 2005-05-24 23:03:39 7 days 23:09:00
333 2005-05-24 23:04:41 9 days 02:39:00
222 2005-05-24 23:05:21 8 days 05:28:00
549 2005-05-24 23:08:07 2 days 02:24:00

Table 11.3: Rental Duration Statistics by Customer
customer_id average minimum maximum
1 4 days 11:00:00 1 day 01:57:00 9 days
2 5 days 12:00:00 19:13:00 9 days
3 5 days 21:00:00 19:33:00 8 days
4 3 days 22:00:00 23:38:00 8 days
5 5 days 01:00:00 20:10:00 9 days

apply the justify_interval function to force the interval to display correctly (this
corrects an interval of 1 day 26:00:00 to show 2 days 02:00:00 – the interval still
shows the correct duration, but it looks a bit strange.) The date_trunc function
works the same way as the date_part function seen previously, but it truncates the
date to remove all smaller units of time, as in Table 11.3.
select customer_id,
date_trunc('hour',
justify_interval(avg(return_date - rental_date))

) as average,
min(return_date - rental_date) as minimum,
date_trunc('day',max(return_date - rental_date)) as maximum

from rental
group by customer_id
order by customer_id

If you need to round the interval rather than truncate the interval, simply add
half the unit used in date_trunc and the effect will be one of rounding. You will
also need to use justify_interval before applying the date_trunc as shown in
query below.
select customer_id,
date_trunc('day',
justify_interval(min(return_date-rental_date)+interval '12 hours')
) as minimum,
date_trunc('day',max(return_date - rental_date)) as maximum

from rental
group by customer_id
order by customer_id

Note. PostgreSQL returns null when you try to create an interval when

11.3. COMPARING CAPACITY AND DEMAND 55

Table 11.4: Rental Duration Statistics by Month
rental_month average minimum maximum rentals
2005-05-01 4 days 21:00:00 18:01:00 9 days 1156
2005-06-01 5 days 01:00:00 18:02:00 9 days 2311
2005-07-01 5 days 18:00:00 9 days 6709
2005-08-01 5 days 01:00:00 18:00:00 9 days 5686

either the start or end of the interval is null, so if the rental has not
been completed and return_date is null, that record is skipped over
by any grouping function like min.

From the Business Analysis viewpoint, being able to report on the duration of busi-
ness events can give you a better understanding of the problem domain. Knowing
how long a business activity takes is a key part of understanding business functions,
especially in service organizations that need to know how long it takes from the
original request until the customer is satisifed with the service received.

A simple adjustment to the query that produced Table 11.3, provides an average
rental duration by month, Table 11.4.
select date_trunc('month', rental_date) as rental_month,
date_trunc('hour',
justify_interval(avg(return_date - rental_date))

) as average,
min(return_date - rental_date) as minimum,
date_trunc('day',max(return_date - rental_date)) as maximum,
count(1) as rentals

from rental
group by rental_month
order by rental_month

In a service organization, it can be useful to split the duration of business activities
into two different parts, the queue time and the activity time. For many organi-
zations the queue time is longer than then activity time, so a project to optimize
the activities may not have any impact on how long it takes for the customer to be
satisfied.

The archeology task in many systems involves identifying the different business
events, so the overall duration can be decomposed into the component steps. Many
existing systems do not track all the low level steps involved in a workflow, so you
cannot differentiate between time spent in queues and time spent actually working
on a task.

11.3 Comparing Capacity and Demand

In the DVDRental sample, the realized demand for a title can be found by identifying
overlapping rental periods. You can only get the realized demand because the

56 CHAPTER 11. BUSINESS ANALYSIS AND DATABASE ARCHEOLOGY

Table 11.5: Demand for a film
film_id title rental_date demand copies

951 Voyage Legally 2005-05-25 15:54:16 1 7
951 Voyage Legally 2005-05-26 06:14:06 2 7
951 Voyage Legally 2005-05-27 16:40:40 3 7
951 Voyage Legally 2005-06-15 05:55:40 1 7
951 Voyage Legally 2005-06-17 11:24:57 2 7

database does not record the customers who were not able to rent a title because it
was not available in the store. In some domains this latent demand is an important
concept as it is a signal to the organization, so a concert promoter may put on more
dates if all the concerts sell out quickly.

To get the set of overlapping rentals, you first need to query to get a list of films
and the associated rental_dates, and then at the rental_date check how many
rentals overlap that rental_date. You only need to check at the start of a rental,
since the end time is when the demand reduces. Results are in Table 11.5.
with rentals as (
select film.film_id, film.title, rental.rental_date,

(select count(1) from inventory tot
where tot.film_id = film.film_id) as copies

from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id

and film.title = 'Voyage Legally'
)
select film_id, title,
rental_date,
(select count(1) from rental
join inventory on inventory.inventory_id = rental.inventory_id
where inventory.film_id = rentals.film_id
and rental.rental_date <= rentals.rental_date
and (rental.return_date > rentals.rental_date
or rental.return_date is null)

) demand,
copies

from rentals
order by film_id, rental_date

Note. The rentals CTE has clause film.title = 'Voyage Legally'
to improve the speed of the query by restricting it to a single title. This
is because every rental for a film is compared against all other rentals
for that film, so this is an O(n2) problem, and when you query all titles,
the query takes about a minute to execute.

Table 11.5 shows that the demand at each of the rental dates, together with the
number of copies of that title at the rental date. In your real system you may need

11.3. COMPARING CAPACITY AND DEMAND 57

Table 11.6: Stockouts
film_id title first_stockout stockouts copies
951 Voyage Legally 2005-08-02 11:42:23 2 7

to calculate the capacity at each rental date, if resources change over time or are
unavailable for periodic maintenance.

As written, the query is only partially useful, a refinement is to just report the
rental_dates when there are no more copies of the film available, and then count
the number of times when the availability of the film drops to zero.
with rentals as (
select film.film_id, film.title, rental.rental_date,

(select count(1) from inventory tot
where tot.film_id = film.film_id) as copies

from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id

and film.title = 'Voyage Legally'
),
out_of_stock as (
select film_id, title,

rental_date,
case when copies <= (
select count(1) from rental
join inventory on inventory.inventory_id = rental.inventory_id
where inventory.film_id = rentals.film_id
and rental.rental_date <= rentals.rental_date
and (rental.return_date > rentals.rental_date
or rental.return_date is null)

) then true end as no_copies,
copies

from rentals
)
select film_id, title, min(rental_date) as first_stockout,
count(1) as stockouts, copies

from out_of_stock
where out_of_stock.no_copies = true
group by film_id, title, copies
order by stockouts desc, film_id, title, copies

Ordering the results of this query by the count of stockouts, identifies the titles
which went out of stock the most. This query reveals the capability to determine
the titles that need more copies to prevent future stockouts.

You will find that on real databases, this type of query may take minutes or hours
to run. This is acceptable as part of database archeology, because you are interested
in identifying business concepts and capabilities. If it turns out that this capability

58 CHAPTER 11. BUSINESS ANALYSIS AND DATABASE ARCHEOLOGY

is needed in the application, the development team can build in features to enable
this type of capacity vs. demand monitoring.

Note. In the section on Transaction Rates you will need to divide the
results in table 11.1 by the number of days covered by your query if you
want the actual transaction rate for that hour of the day. Sometimes all
you will need is the relative rates at different times to get the information
you need, othertimes you might need to calculate the actual rates. A
simple query like the one shown below will give you the number of days
in the dataset, and the number of rentals on each of the days.

select date_trunc('day', rental_date) as days, count(1)
from rental
group by days
order by days

Chapter 12

Learning To Write SQL
Queries

The last query in the previous chapter that generated Table 11.5 needed two CTE
to generate the final result. Although when following through these ideas in the
book you can just retype the query from start to finish, when building your own
queries, it is much easier to build up the queries in a series of steps, executing the
query as you go to ensure that it makes sense

12.1 Plan Your Query

Your first step in planning a query is to look at your ERD to find an appropriate
path through the tables. Since the query is trying to detect stockouts, one place to
start is with the rental table, giving this possible plan for the query:

• rental access via rental_date to get inventory_id
• Join to inventory on inventory_id
• Join to film to get film_id and title
• From film go back to inventory to count copies
• On each rental_date associated with a film, count the active rentals there

are (rented before this date and not yet returned at this date)
• Compare the count of copies to the count of active rentals and record a

stockout for whenever the availability goes to zero
• For each film, count the number of stockouts and get the date of the first

stockout

Note. Initially you might need to write down a detailed plan for the
overall query. Later on as you become more familiar with the database
you might be able to get away with just minimal notes on yor planned
path through the tables.

59

60 CHAPTER 12. LEARNING TO WRITE SQL QUERIES

12.2 Start by Querying a Single Table

With every query, it is easiest to start querying a single table, that way you know
the dataset you are getting back from your query. If it might be a large dataset,
then you might want to put a limit on the size of the result set you get back, but
with only 16k rows, the rental table is small enough that this is not an issue.
select rental.inventory_id, rental.rental_date
from rental
where rental_date between '2005-01-01' and '2005-12-31'

For a real query you would likely want to limit the resulting dataset to a specific
date range as shown above, usign whatever date format is set for your system
(yyyy-mm-dd in the above case).

12.3 Add Joins One at a Time

Although it is tempting to wrtie out the complete set of joins in one go, doing so
may delay you if you make a mistake in the join condition, especially if the mistake
results in more rows than you expect.
select inventory.inventory_id, rental.rental_date
from rental
join inventory on inventory.inventory_id = rental.inventory_id

You should get exactly the same number of rows for this query as you had for the
first query. To confirm that the result datasets are identical, you can combine1 the
two queries using except to find the results that are in the first query and not in
the second query.
select inventory.inventory_id, rental.rental_date
from rental
join inventory on inventory.inventory_id = rental.inventory_id
except
select rental.inventory_id, rental.rental_date
from rental

Note. PostgreSQL uses union, intersect and except for combining
queries, Oracle uses minus instead of except.

Once you have verified that the join to the inventory table is correct, then you
can add in the join to the film table.
select film.film_id, film.title, rental.rental_date
from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id
order by film_id, rental_date

1https://www.postgresql.org/docs/9.6/queries-union.html

https://www.postgresql.org/docs/9.6/queries-union.html

12.4. ADD SUBQUERY AFTER MAIN QUERY IS CORRECT 61

Table 12.1: Rentals by Title and Date
film_id title rental_date

1 Academy Dinosaur 2005-05-27 07:03:28
1 Academy Dinosaur 2005-05-30 20:21:07
1 Academy Dinosaur 2005-06-15 02:57:51
1 Academy Dinosaur 2005-06-17 20:24:00
1 Academy Dinosaur 2005-06-21 00:30:26

Table 12.2: Number of Copies
count
8

The result set in Table 12.1 is ordered by film_id and rental_date to make it
easier to understand the dataset.

12.4 Add Subquery After Main Query is Correct

Using the results in Table 12.1, you can write the subquery to find the total number
of copies as a separate query. Initially you can hardcode the film_id to make sure
that the query is correct.
select count(1) from inventory tot
where tot.film_id = 1

Table 12.2 shows how many copies of Academy Dinosaur exist in the database. You
can now add the subquery to the first query to get the copies at the rental date,
replacing the hardcoded 1 with film.film_id so that the subquery executes for
each row in the dataset.
select film.film_id, film.title, rental.rental_date,
(select count(1) from inventory tot
where tot.film_id = film.film_id) as copies

from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id

This type of subquery, because it runs for each row in the dataset, takes much longer
than the query without the subquery. Ideally you would avoid writing this type of
subquery, but it cannot be avoided unless you know for definite that the availability
information that you are quering for does not vary by date

For DVDRental, because the number of copies does not change over time, you could
try to get the number of copies using the following query that has another join
back to the inventory table and then uses group by to get the count.

62 CHAPTER 12. LEARNING TO WRITE SQL QUERIES

Table 12.3: Simultaneous Rentals
film_id rental_date simult

462 2006-02-14 15:16:03 2
789 2006-02-14 15:16:03 2
189 2006-02-14 15:16:03 2
301 2006-02-14 15:16:03 2
892 2006-02-14 15:16:03 2

select film.film_id, film.title, rental.rental_date,
count(tot.inventory_id) as copies
from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id
join inventory tot on tot.film_id = film.film_id
group by film.film_id, film.title, rental.rental_date

Interestingly this gives a few less rows than the original subquery version, as you
can confirm by using except to identify the differences between the two queries.
The problem is that there are some records in the rental table where the same
film is rented twice at the same time (but under a different inventory_id).
select film_id, rental.rental_date, count(1) as simult
from rental
join inventory on inventory.inventory_id = rental.inventory_id
group by film_id, rental_date
having count(1) > 1

These simultaneous rentals shown in Table 12.3 cause the group by version of
the query to double count the copies of the film (since the count is done once for
each distinct inventory_id at the rental_date). The above query uses having2 in
place of the usual where clause to only return the rows where there are simultaneous
rentals.

Assuming your resource availabilty does not vary by time, write another, separate
CTE query that just gets the number of copies of each film. Since this does not
count over the rental records, it correctly counts the number of copies.
select film.film_id, film.title,
count(tot.inventory_id) as copies
from film
join inventory tot on tot.film_id = film.film_id
group by film.film_id, film.title
order by film.film_id

Taking this approach would make the overall query run faster, but with the added
complication of now needing three CTE before the main query.

2https://www.postgresql.org/docs/9.6/tutorial-agg.html

https://www.postgresql.org/docs/9.6/tutorial-agg.html

12.5. INITIALLY LIMIT THE SIZE OF CTE RESULTS 63

Table 12.4: Rentals CTE Query Results
film_id title rental_date copies

1 Academy Dinosaur 2005-07-08 19:03:15 8
1 Academy Dinosaur 2005-08-02 20:13:10 8
1 Academy Dinosaur 2005-08-21 21:27:43 8
1 Academy Dinosaur 2005-05-30 20:21:07 8
1 Academy Dinosaur 2005-06-17 20:24:00 8

12.5 Initially Limit the Size of CTE Results

The decision to use a CTE depends on whether you can figure out a reasonable and
readable way to get your desired results from a single query. For the stockout query,
it was simpler to have a CTE that just had the film, rental_date and number of
copies.

To make the next stage of the query writing easier, you can limit the size of the
result set so that this first part of the query runs faster. In the DVDRental example,
this can be done by limiting the result set to a single film.title, e.g. Academy
Dinosaur as in Table 12.4.
with rentals as (
select film.film_id, film.title, rental.rental_date,

(select count(1) from inventory tot
where tot.film_id = film.film_id) as copies

from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id

and film.title = 'Academy Dinosaur'
)
select film_id, title,
rental_date, copies

from rentals

Using the results from the rentals CTE, you can now write the subquery to find
the number of concurrent rentals at the rental_date for the relevant film_id. As
before, when developing the subquery it is useful to hardcode relevant values from
the rentals CTE results in Table 12.4.
select count(1) from rental
join inventory on inventory.inventory_id = rental.inventory_id
where inventory.film_id = 1
and rental.rental_date <= '2005-05-30 20:21:07'
and (rental.return_date > '2005-05-30 20:21:07'
or rental.return_date is null)

Note. This subquery has to take into account null return_date values,
that mean the DVD has not been returned yet.

The next step is to add this subquery into the previous query, removing the hard-

64 CHAPTER 12. LEARNING TO WRITE SQL QUERIES

Table 12.5: Concurrent Rentals at 2005-05-30 20:21:07
count
2

Table 12.6: Rentals with count of concurrent rentals
film_id title rental_date rented copies

1 Academy Dinosaur 2005-05-27 07:03:28 1 8
1 Academy Dinosaur 2005-05-30 20:21:07 2 8
1 Academy Dinosaur 2005-06-15 02:57:51 1 8
1 Academy Dinosaur 2005-06-17 20:24:00 2 8
1 Academy Dinosaur 2005-06-21 00:30:26 2 8

coding. The results are ordered by rental_date to make it easier to look up the
result for 2005-05-30 20:21:07 to ensure that the query still gives the same result
for that date.
with rentals as (
select film.film_id, film.title, rental.rental_date,

(select count(1) from inventory tot
where tot.film_id = film.film_id) as copies

from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id

and film.title = 'Academy Dinosaur'
)
select film_id, title,
rental_date,
(select count(1) from rental
join inventory on inventory.inventory_id = rental.inventory_id
where inventory.film_id = rentals.film_id

and rental.rental_date <= rentals.rental_date
and (rental.return_date > rentals.rental_date
or rental.return_date is null)) as rented,

copies
from rentals
order by rental_date

The last part of this second query is to use case3 when to compare the number of
copies rented with the total number of copies. This can be done by case when
copies <= rented then true end, although in the query you cannot use rented
and instead have to put in the entire subquery.
with rentals as (
select film.film_id, film.title, rental.rental_date,

(select count(1) from inventory tot
where tot.film_id = film.film_id) as copies

3https://www.postgresql.org/docs/9.6/functions-conditional.html

https://www.postgresql.org/docs/9.6/functions-conditional.html

12.6. GROUP AND COUNT IN FINAL QUERY 65

Table 12.7: Rentals with no copies
film_id title rental_date no_copies copies

1 Academy Dinosaur 2005-05-27 07:03:28 null 8
1 Academy Dinosaur 2005-05-30 20:21:07 null 8
1 Academy Dinosaur 2005-06-15 02:57:51 null 8
1 Academy Dinosaur 2005-06-17 20:24:00 null 8
1 Academy Dinosaur 2005-06-21 00:30:26 null 8

from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id

and film.title = 'Academy Dinosaur'
),
out_of_stock as (
select film_id, title,
rental_date,
case when copies <= (select count(1) from rental

join inventory on inventory.inventory_id = rental.inventory_id
where inventory.film_id = rentals.film_id
and rental.rental_date <= rentals.rental_date
and (rental.return_date > rentals.rental_date
or rental.return_date is null))

then true end as no_copies,
copies

from rentals
)
select film_id, title, rental_date,
no_copies, copies

order by rental_date

12.6 Group and Count in Final Query

The lasy part of the query is to count the number of times there were no_copies
available. SQL makes this simple because when you use the expression
count(no_copies) it only counts the rows when the value of no_copies in
a row is not null4. This property also allows the query to count the number of
rentals by using count(1) to record the number of rows that meet the grouping
criteria.

In combination these two counts give a sense of the relevance of any stockout.

• No Demand - few stockouts, few rentals
• Meeting Demand - few stockouts, lots of rentals
• Capacity Issues - many stockouts, lots of rentals

4https://www.postgresql.org/docs/9.6/functions-aggregate.html

https://www.postgresql.org/docs/9.6/functions-aggregate.html

66 CHAPTER 12. LEARNING TO WRITE SQL QUERIES

Table 12.8: Rentals with stockouts and rentals
film_id title first_stockout stockouts rentals copies
1 Academy Dinosaur 2005-05-27 07:03:28 0 23 8

• Possible problem - many stockouts, few rentals
with rentals as (
select film.film_id, film.title, rental.rental_date,

(select count(1) from inventory tot
where tot.film_id = film.film_id) as copies

from rental
join inventory on inventory.inventory_id = rental.inventory_id
join film on film.film_id = inventory.film_id

and film.title = 'Academy Dinosaur'
),
out_of_stock as (
select film_id, title,
rental_date,
case when copies <= (select count(1) from rental

join inventory on inventory.inventory_id = rental.inventory_id
where inventory.film_id = rentals.film_id
and rental.rental_date <= rentals.rental_date
and (rental.return_date > rentals.rental_date
or rental.return_date is null))

then true end as no_copies,
copies

from rentals
)
select film_id, title, min(rental_date) as first_stockout,
count(no_copies) as stockouts,
count(1) as rentals, copies

from out_of_stock
group by film_id, title, copies
order by film_id

Note. The results in Table 12.8 indicate that Academy Dinosaur was
not a good sample for the first CTE, as that title never had a stockout.

As you work though your query plan, you are likely to find that you do not follow it
exactly. This is normal when doing Database Archeology because you are interested
in finding out what you can discover about the data to help inform your Business
Analysis work.

Chapter 13

Modifying Data

Although strictly not part of business analysis, sometimes as part of database ar-
cheology it can be useful to make some minor changes to the data in a test database
to see how the application responds. SQL makes it easy to update column values
in a row, insert new rows and delete existing rows.

13.1 Turn Off Autocommit

Databases have the concept of a transaction. The idea is that you can make a set
of related changes to the database, and then decide whether to commit the changes,
or rollback the changes. After youi have made the changes, any seelct statement
you write will see the changes, but your changes will not be made available to any
other users of the database until you commit your changes. This is great because it
allows you to check the results of your changes before making them permanent.

Unfortunately, to make it easy for users, many tools like pgAdmin by default enable
Auto Commit whereby after each statenment is executed against the database, it
automatically commits the change. This means that you cannot use rollback to
undo your changes, so you should turn off this option. In pgAdmin the option to
turn off Auto Commit is next to the icon used to run a query.

Figure 13.1: pgAdmin Auto Commit Option

67

68 CHAPTER 13. MODIFYING DATA

Table 13.1: Original Value
film_id title
1 Academy Dinosaur

Table 13.2: Modified Title
film_id title
1 Hard Times

Once you have turned off Auto Commit, you will need to issue the command commit*
to save your changes, orrollback‘ to undo your changes.

13.2 SQL Works on Sets of Data

Before attempting any change to the data in a database, you need to understand
that SQL operates on sets of data. Just as a select returns a dataset based on the
where clause and any join conditions, an update or delete will affect every row
that matches the where condition.

The safest option when developing an update or delete statement is to first create
a select statement with the same where clause that you plan to use in the update
or delete statment. That way you can see exactly the rows that will be affected
by the statements.
select film_id, title
from film
where film_id = 1

When you execute this select statement, you should only see one row in the result
dataset in table 13.1, showing the film_id of 1 and a title of Academy Dinosaur.
update film
set title = 'Hard Times'
where film_id = 1

The update will show a message stating how many rows were updated and how long
it took to run the updates.

UPDATE 1

Query returned successfully in 108 msec.

Now when you re-run the original query, it should see the new title to the film,
the old value of Academy Dinosaur has been replaced as shown in in table 13.2.
select film_id, title
from film
where film_id = 1

13.3. UPDATING EXISTING DATA 69

Table 13.3: Modified Title
film_id title
1 Academy Dinosaur

Note. Now that you have used update against that row in the film
table, that new value is only visible by your current connection to the
database. All other users are blocked from making any further changes
to that row of the database until you either rollback or commit your
change.

To demonstrate the reversible nature of database updates prior to issuing a commit,
next issue a rollback command to the database.
rollback

Now, when you re-run the select statement will show the original Academy Dino-
saur value again as shown in in table 13.3.
select film_id, title
from film
where film_id = 1

Alternatively, issuing a commit command would make your changes permanent.

Warning. If you had omitted the line where film_id = 1, then every
record in the film table would now have a title of Hard Times. The
only warning you would have would be the message after the update that
would state UPDATE 1000, so you should always check that the number
of rows updated by your statement matches the number of rows you
expected to update. If the number is different, always do a rollback to
revert the data to the previous state.

13.3 Updating Existing data

The simple update statements in the previous section just updated a single column
on a single row. SQL lets you update multiple columns in a table at the same time,
all you have to do is list the column name and new value separated by a comma as
per the example below updating the title and description columns.
Update film
set title = 'Hard Times',
description = 'Chaplin Film'

where film_id = 1

Single table, but triggers (out of scope for this book) allow the update to be propa-
gated to other tables.

calculation on existing value

Query to set value,

70 CHAPTER 13. MODIFYING DATA

13.4 Inserting new data

13.5 Deleting rows from the database

After you have used SQL to explore a database, to understand an application, there
is still more SQL to learn.

Chapter 14

Metadata in Databases

For systems that need to be configurable in the data they store about the key
entities, the names of the tables in the database are often not reflective of the
business concepts, as in this stylized patient record database.

Figure 14.1 has a Patient table in the ERD, but the rest of the table names do not
reflect the key business concepts. The reason for this is that in hospital patient data
systems, many different types of readings need to be recorded about the patient,
but these readings will be different depending on the type of hospital and between
different units. So these types of systems tend to be locally customized to add the
appropriate readings that are needed by a particular unit and associated specialists.

Note. This Example Patient Data Model uses id as the name of the
primary key field in a table, and tablename_id as the name of the
foreign key field in other tables. So where the DVDRental database
used film_id in every table, in this database the patient table has an
id field and the other tables refer to it using patient_id as the column
name.

Another example of this type of systems are SCADA systems, used to display data
from multiple sensors around an industrial plant and then send controls signals
back. These systems have to be locally customized to match the exact equipment
and monitors in the plant.

14.1 Trading Complexity for Extensibility

For these kind of systems, it is not effective to change the database tables every
time a new parameter needs to be recorded, so instead the different parameters are
stored as a row in a table. In the example patient data model, the Attributes
table, which are grouped by Categories and each has an associated Units record.

So if you need to define a Manual Heart Rate to record a patient rea-
ding that the staff have measured manually, then a new row needs to

71

72 CHAPTER 14. METADATA IN DATABASES

patient.attributes

name

id

category_id

unit_id

multiplier
multiple_text_values
description
data_type

patient.fixed_text

attribute_id
text_id

attribute_id

display_text
value
description
display_order

patient.numeric_data

patient_id
attribute_id
reading_time

attribute_id

patient_id

value
update_time

patient.text_data

patient_id
attribute_id
reading_time

attribute_id

patient_id

value
update_time

patient.categories

id

name

patient.fixed_text_data

patient_id
attribute_id
reading_time
text_id

attribute_id
text_id

patient_id

update_time

patient.patients

id

first_name
last_name

patient.units

id

parent_id

name
multiplier

Figure 14.1: Example Patient Data Model

be inserted into the Attributes table with a name of Manual Heart
Rate and an data_type of Numeric. This has to be associated with a
Units record of Heart Rate BPM and then data can be entered into
the Numeric_Data table for the appropriate new attribute_id and
patient_id for the reading_time when the reading was taken.

This is more complex than just entering a value into a row in an existing table,
but it is much simpler for the development team when there are multiple different
heart rate monitors that can potentially be hooked up to a patient. When defining
a new Attribute all that has to be decided is the data_type, Numeric, Text or
FixedText, and then a name and unit assigned to the new Attribute.

From a development standpoint, there is extra complexity in that the developer
needs to know the data_type of the Attribute in order to know which of the Data
tables to query for the data. From a user customization viewpoint however, it is
much simpler. All that is needed is to define a new Attribute and then place
that attribute on a datasheet or data entry form and the customization is complete.
The code simply needs to look up the data_type of the attribute in order to choose
which data table to use.

14.2. DATABASE ARCHEOLOGY AND METADATA 73

Table 14.1: Attributes by Category
category attribute unit
Blood Pressure Diastolic Blood Pressure mmHg
Blood Pressure Systolic Blood Pressure mmHg

14.2 Database Archeology and Metadata

When confronted with this type of system, a simple measure of how complex the
database archeology task will be to use select count(1) from attributes. A
database with fewer than 100 attributes is easy to understand and deal with, but
when you find a database with over 10,000 rows in attributes, then you have to
hope that the Attributes are grouped into understandable Categories, as shown
in Table 14.1.
select cat.name as category,

attr.name as attribute,
units.name as unit

from categories cat
join attributes attr on attr.category_id = cat.id
join units on units.id = attr.unit_id
order by category, attribute

This query also pulls in the Units as that often helps an outsider get a handle on
what the name of the attribute means, it also puts it in context for conversations
with the users.

What makes the business analysis task different is that, in these types of systems,
the relationships between the different attributes are partially obscured. In a third
normal form database, just looking at the column names in a table lets you know
the important details about that business concept. In this case, you have to trust
that the grouping of the Attributes into Categories makes logical sense without
deep domain knowledge.

Sometimes the information as to which Attributes are displayed on a form or
datasheet is only contained in the files that define the form or datasheet, but often
that information is available in the database. The simplest form of this will have
a Forms table with a relationship to a Controls table that has a relationship to
the Attributes table. With this setup the positioning and layout of an attribute
is handled by the Controls row, with the various Controls rows being organized
by a row in the Forms table.

Discovering the key business concepts then resolves down to identifying the attri-
butes that are collected on each data entry form, since logically users would expect
to be entering data associated with business concept on one form. Relationships
between the different concepts are harder to discover since the only real association
present is that of the readings with the patient.

74 CHAPTER 14. METADATA IN DATABASES

14.3 Business Analysis with Metadata

With metadata in the database, the business analysis task shifts from looking at the
structure of the database, to looking at the configuration data in the database. In
the context of the Example Patient Data Model this means focusing on the contents
of the Attributes, Categories and Units tables.

Useful questions that can be asked include:

• Are all the defined Attributes used (count rows in the appropriate data table
to discover this)

• Are all the Attributes uniquely named (sort list by attribute name and then
category name)

• Do related Attributes have the appropriate Units
• Do the Categories and associated Attributes make sense to the domain

users
• Is there any overlap between Categories that could cause confusion
• Are there subsets of Attributes that could be usefully and safely extracted

into a different Categories

When dealing with metadata in the context of migrating from a legacy system, there
are three main cases to consider

1. Legacy system and new system both use metadata, so the business analysis
task lies mapping from the Categories and Attributes in the old system to
the Categories and Attributes in the new system.

2. Legacy system used a relational database model but the new system uses me-
tadata. Here the business analysis task lies in mapping from the old relational
columns to an appropriate set of Categories, Attributes and Units.

3. Legacy system used metadata, but the new system uses a relational database
model. Here the business analysis challenge lies in creating a mapping from
the Categories and Attributes into the appropriate columns in the tables
in the new system. This can be more of a challenge because you might need
to map multiple attributes from the legacy system into a single column in
the new database (e.g. the old system might have Admission Weight, Daily
Weight and Discharge Weight, while the new database has a single column
for Patient Weight).

Metadata in databases is relatively rare outside of specific domains, so you need to
be extra careful when you encounter your first example. These systems are often
customized by the end users, so there can be a lot of duplication and overlap in
naming of attributes and grouping into categories.

Chapter 15

Object Models in Databases

One step up in complexity beyond the metadata approach is to define everything
in the database, so that anything can be added to the application without needing
to change the structure of the database. This takes the example of the Metadata in
Databases and extends it to make everything, not just the Attributes configurable
via rows in various tables.

What follows is a complete reimplementation of the DVDRental database, but using
a configurable database design.

For systems that need to be configurable in the data they store about the key
entities, the names of the tables in the database are often not reflective of the
business concepts, as in this stylized patient record database.

Figure 15.1 has a Patient table in the ERD, but the rest of the table names do not
reflect the key business concepts.

Note. Object Models in Databases are a way of avoiding having to
change the schema of the database. An alternative strategy is to use a
microservices architecture where each microservice has a small database
schema that matches the purpose of the microservice. This avoids the
need to change the database schema, since microservices are very narrow
and hence do not often need to evolve the schema.

75

76 CHAPTER 15. OBJECT MODELS IN DATABASES

patient.attributes

name

id

category_id

unit_id

multiplier
multiple_text_values
description
data_type

patient.fixed_text

attribute_id
text_id

attribute_id

display_text
value
description
display_order

patient.numeric_data

patient_id
attribute_id
reading_time

attribute_id

patient_id

value
update_time

patient.text_data

patient_id
attribute_id
reading_time

attribute_id

patient_id

value
update_time

patient.categories

id

name

patient.fixed_text_data

patient_id
attribute_id
reading_time
text_id

attribute_id
text_id

patient_id

update_time

patient.patients

id

first_name
last_name

patient.units

id

parent_id

name
multiplier

Figure 15.1: Example Patient Data Model

Chapter 16

Hierarchical Data

In some databases, there is a hierarchical relationship between rows in tables. The
most common types seen are that of manufacturing systems, where there is the
relationship between components, parts and sub assemblies, and in a personnel
systems with the relatinship between employees and managers as shown below.

For simple cases where the number of levels of the hierarchy is known, then this case
can be simply dealt with by a join back to the original table looking for the relevant
paretn record (or child records if your query needs to look down the hierarchy).
Unfortunately for the general case where the depth of the hierarchy is not known,
then you need to use a CTE with an extra option.

16.1 Parts and Sub-Parts

Instead of Oracle’s start with … connect by syntax, PostgreSQL uses

https://www.postgresql.org/docs/9.6/queries-with.html
WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
SELECT sub_part, part, quantity
FROM parts
WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)

SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

77

https://www.postgresql.org/docs/9.6/queries-with.html

78 CHAPTER 16. HIERARCHICAL DATA

Figure 16.1: Staff Manager Relationship

	Database Archaeology
	Learning The World
	The role of the Business Analyst
	Business Analysis is Important
	Using SQL in Business Analysis

	A Sample Database
	Sample Database is in PostgreSQL
	Installation Instructions
	Post-Installation Test
	Sample Database is now available

	Database Concepts
	Database Schemas
	Database Tables
	Relationships between tables
	Third Normal Form Database Tables

	Basic SQL
	Selecting specific columns
	Choosing the data using the where clause
	Partial matching on text columns
	Indexes on Tables

	Basic Database Archeology
	Business Concepts
	Data Attributes
	Default Values
	Looking at the Data

	Pulling Data From Multiple Tables
	Other types of joins
	Joining multiple tables
	Table aliases

	Database Archeology - Relationships
	Primary Keys
	Foreign Keys
	Table Indexes

	Entity Relationship Diagrams (ERD)
	Full Size Entity Relationship Diagrams
	CASE Tools
	An ERD is essential for understanding a large database

	Learning The Domain
	How large are the tables?
	Walking the database
	Some joins are incorrect
	Common Table Expressions
	Exploring Cardinality
	Full Text Indexes

	Database Views
	Views
	Materialized Views
	Listing the views
	Understanding Views

	Business Analysis and Database Archeology
	Transaction Rates
	Investigating Durations
	Comparing Capacity and Demand

	Learning To Write SQL Queries
	Plan Your Query
	Start by Querying a Single Table
	Add Joins One at a Time
	Add Subquery After Main Query is Correct
	Initially Limit the Size of CTE Results
	Group and Count in Final Query

	Modifying Data
	Turn Off Autocommit
	SQL Works on Sets of Data
	Updating Existing data
	Inserting new data
	Deleting rows from the database

	Metadata in Databases
	Trading Complexity for Extensibility
	Database Archeology and Metadata
	Business Analysis with Metadata

	Object Models in Databases
	Hierarchical Data
	Parts and Sub-Parts

